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PROLOGUE 

 

The present research proposed to contribute to the field of emotion recognition, through the 

use of brain-computer interfaces, which allow to adequately collect EEG signals related to 

the recognition process, for subsequent analysis and processing. It is worth noting that in 

the present work an investigation is carried out on emotion recognition, using two sets of 

data that are generated from the EEG signals collected by us, by carrying out experiments 

designed to elicit  emotions, using direct methods for provoking them, such as activities in 

the Stock Market and in the online Poker game. 

Different BCI devices were used for data recollection, with 8 and 14 electrodes respectively. 

All this allowed us to have a new perspective of research in this field, focusing on interactive 

and dynamic methods for emotions elicitation, as opposed to the predominant methods, 

which are basically mainly of a passive nature. 

 

Adequate systematic review of the literature is presented, focused on the recognition of 

emotions using EEG signals, combined with the use of machine learning, which allowed us 

to realize the best focus for this research; additionally, we are sure that this systematic 

review of the literature will also be very useful as a reference for other researchers in this 

field. 

 

As it was indicated before, the two databases developed in this research were very useful 

for the purposes of this work, and we are also sure that they might be used as references 

for future research of this type. 

For the present work, the process of selecting characteristics was proposed as a mixture of 

two methods: The Mutual Information Matrix (MIM) and the Chi-squared statistics, which 

turned out to be very appropriate. 

 

The procedures used in this research, and the results obtained, were, in general, better 

than those found in the literature review. 

 

The extraction and selection of characteristics, through the use of algorithms that extract 

the required information from the EEG signals, proved to be better than just using raw data, 

and allowed to improve the performance of the processes.  
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ABSTRACT  

This study aims to contribute to the emotion recognition field that uses EEG-based BCIs. 

The application of this scientific area range is vast, from the medical diagnosis of mental 

illnesses to the improvement of AI designed to interact with humans, passing through daily 

use programs either to improve learning environments or to enhance emotional awareness 

to facilitate decision making in stressful activities that require calm and objectivity to avoid 

mistakes. Those are some possible uses, among many others. 

The present doctoral thesis has researched emotion recognition using two EEG 

datasets generated by the author. Participants were subjected to two emotion elicitation 

methods: stock market activities and online poker games. The datasets were developed as 

part of this study to research results using active emotion elicitation methods. They offered 

a new perspective where EEG signals are recollected using two different BCI devices of 8 

and 14 electrodes, respectively, applied to participants while engaged in active 

undertakings such as stock trading or online poker games. These activities were chosen 

because of their essence: they are somewhat unpredictable, ludic, and produce strong 

emotions in their participants. Besides, these forms of emotion elicitation are more 

interactive and dynamic than predominant methods using only passive stimulation with 

images, sounds, or films.  

Machine learning systems were also developed. They comprehended the phases of pre-

processing, feature extraction, feature selection, classification algorithms, and performance 

evaluation. These systems recognize emotions using the valence-arousal space. We 

applied feature extraction techniques such as HOC, statistics, frequency bands, Differential 

Entropy, Differential Asymmetry, and Rational Asymmetry, i.e., methods in the time, 

frequency, and spatial domains, to obtain an original feature vector with very informative 

data.  

We propose a feature selection technique combining a filter plus a wrapper algorithm to 

get an optimized input vector to achieve a more precise classification with less overfitting 

probabilities and better performance. A mutual information matrix is used as a filter 

algorithm to evaluate the correlation between pairs of features. Then, after a trial 

classification, Chi-Square Statistics is used, a wrapper method to eliminate elements that 

are not significant because they do not influence the output classes. Our proposed method 

obtains non-redundant features without correlation pair-wise because of the mutual 

information matrix results; and relevant features that affect the output categorization due to 

the Chi-Square statistics application. 
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The machine learning algorithms are chosen using three criteria: (1) because of their 

better performances compared with other tested, (2) since each represents different types 

of approaches to cover an ample range of machine learning algorithms: kNN is simple, non-

parametric, Random Forest is an ensemble algorithm, MLP is a neuronal network, and 

1DCNN is deep learning, and (3) because in the literature review we found that these are 

the algorithms that performed better for 3 to 4 class categorization. Random forest, multi-

layer perceptron, kNN, and one-dimensional CNN are the selected algorithms. They were 

applied to our datasets and to the DEAP database, which is public access information. The 

application in a DEAP dataset subset, with 8 and 14 channels, aims to compare the 

systems’ performances that the three datasets present using the same feature extraction 

and selection methods. These performances, to some extent, could prove the capability of 

the three datasets’ data to give valuable information to be used for emotion recognition.  

The obtained results were satisfactory, comparable, or even better than those presented 

in state-of-the-art.  
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RESUMEN 

Este estudio tiene como meta contribuir al campo de reconocimiento de emociones 

usando interfaces cerebro-computador para recolección de señales EEG. La aplicación de 

este campo científico es vasta y va desde el diagnóstico médio de enfermedades mentales 

a la mejora de IA diseñada para interactuar con humanos, pasando por programas de uso 

diario para mejorar ambientes de aprendizaje o mejorar la identificación personal de las 

emociones para facilitar la toma de decisiones en actividades que requieren calma y 

objetividad para no cometer errores. Los mencionados son algunos posibles usos entre 

muchos otros.  

En la presente tesis se realiza una investigación sobre reconocimiento de emociones 

usando dos datasets de señales EEG generados por nosotros, con participantes sometidos 

a dos tipos de metodos de elicitación de emociones: actividades en el stock market y el 

juego de poker en línea. Los datasets fueron generados como parte del estudio para 

investigar métodos activos para provocar emociones y ofrecen una perspectiva nueva, en 

la que se recopila señales EEG usando dos diferentes dispositivos con 8 y 14 electrodos 

respectivamente, aplicados a participantes que realizan actividades de trading y de juego 

de poker en línea. Estas actividades fueron escogidas porque son en esencia no-

predecibles, lúdicas y porque son capaces de producir emociones fuertes en los 

participantes. Además, esta forma de elicitación de emociones es interactiva y dinámica en 

contraposición con los métodos predominantes en los que se usa solamente estimulación 

pasiva con imágenes, sonidos o películas.  

Se usan sistemas de aprendizaje automático consistentes en las siguientes fases: pre-

procesamiento, extracción de características, selección de características, algoritmos de 

aprendizaje automático (entrenamiento y prueba) y evaluación de rendimiento. Con ellos 

se efectúa el reconocimiento de emociones en el plano valencia – arousal. Se usan 

procesos para extracción de características relevantes de las señales en el dominio del 

tiempo, tales como HOC; en el dominio de la frecuencia como bandas de frecuencia, 

Differential Entropy, y con información espacial por las diferencias entre hemisferios: 

Differential Asymetry and Rational Asymetry.  

Se propone un método de selección de características que es una combinación de 

técnicas tipo filtro y wrapper para obtener un vector de entrada optimizado para una 

clasificación más precisa con menos posibilidades de overfitting y mejor rendimiento. 

Usamos una mutual information matrix como algoritmo de filtrado que evalúa la correlación 

entre pares de features. Luego de una clasificación de prueba se usa Chi-Square statistics, 
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un método wrapper para descartar características que no son significativas porque no 

influencian en las clases a la salida de los clasificadores. Es decir que el método propuesto 

de selección de características produce features no redundantes por el análisis de la 

correlación entre pares de atributos; y, características relevantes porque afectan la 

categorizacion de emociones a la salidad debido a la aplicación de la estadística Chi-

Square.  

Los algoritmos de machine learning se escogieron utilizando tres criterios: (1) que 

tengan mejor rendimiento comparado con otros algoritmos que se probaron, (2) que 

representen a un amplio rango de algoritmos de machine learning: kNN es simple, no-

paramétrico, Random Forest es un algoritmo tipo ensemble, MLP es una red neuronal y 

1DCNN es deep learning, y (3) porque en la revisión de literatura encontramos que estos 

son los algoritmos que funcionan mejor para clasificación en 3 o 4 clases. Entonces los 

algoritmos seleccionados son kNN, Random Forest, multi-layer perceptrón y CNN para una 

dimensión y se los aplica a las dos bases de datos de propia generación. Además, con  

propósito de comparación también se los aplica en un subset de una base datos pública: 

DEAP. La aplicación en estos subsets de DEAP con 8 y 14 canales, tienen como objetivo 

comparar los rendimientos de los sistemas que los tres datasets prsentan usando los 

mismos métodos de extracción y selección de características de entrada a los 

clasificadores. Estos rendimientos, en alguna medida, podrían ser prueba de la capacidad 

de los datos de los tres datasets para dar información útil para ser usada para 

reconocimiento de emociones.  

Los resultados obtenidos con los algoritmos de clasificación usados fueron 

satisfactorios, comparables o mejores que los del estado del arte.  
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1. INTRODUCTION 

Affective computing is a branch of artificial intelligence that relates to, arises from, or 

influences emotions [1]. Automatic emotion recognition is an area of study that forms part of 

affective computing. Research in this area is rapidly evolving thanks to the availability of 

affordable devices for capturing brain signals, which serve as inputs for systems that decode 

the relationship between emotions and electroencephalographic (EEG) variations. These 

devices are called EEG-based brain-computer interfaces (BCIs). 

Affective states play an essential role in decision-making. Such states can facilitate or 

hinder problem-solving. Emotion recognition takes advantage of positive affective states, 

enhances emotional intelligence, and improves professional and personal success [2]. 

Moreover, emotional self-awareness can help people manage their mental health and optimize 

their work performance. Automatic systems can increase our understanding of emotions and 

promote effective communication among individuals and human-to-machine information 

exchanges. Automatic EEG-based emotion recognition could also help enrich people’s 

relationships with their environment. Besides, automatic emotion recognition will play an 

essential role in artificial intelligence designed for human interaction [3]. 

According to Gartner’s 2019 Hype Cycle report on trending research topics, affective 

computing is at the innovation trigger stage, evidenced by the field’s copious publications. 

However, there are still no defined standards for the different systems components that 

recognize emotions using EEG signals, and it is still challenging to detect and classify emotions 

reliably. Thus, a survey that updates the information in the emotion recognition field, focusing 

on new computational developments, is worthwhile. At the beginning of this research, a 

literature review was carried out. The results presented in chapter 3 of this document allowed 

us to detect the gap in the development of the present work because of the lack of public 

datasets with easy access for emotion recognition using EEG signals. Moreover, the few public 

datasets available were generated using traditional passive emotion elicitation methods, 

becoming clear that new different active ways should be investigated. Another question that 

arises is if the number of electrodes has to be 32 or even 64 to give sufficient EEG information 

to the emotion recognition systems or if a fewer number of channels would be enough for 

emotion identification. 

 Additionally, the results highlight the need to use a feature vector with relevant information 

for processing them with lower computational costs and better accuracies because results 
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obtained from raw data could be lower than those using feature vectors, and the processing 

time is lengthy. Also, different results from different techniques to extract and select features 

exist, but this field needs further research to find the best possible combination for EEG signals.  

Based on the literature’s detected gaps, our hypothesis is that it is possible to obtain 

emotion recognition systems using machine learning algorithms with evaluation performances 

comparable to or even higher than state-of-the-art standards if we:  

• Obtain datasets with data corresponding to commercial BCI devices with eight and 

14 channels using new active emotion elicitation ways.  

• Apply feature extraction with algorithms in time, frequency, and spatial domains, to 

produce an original feature vector that would be enough to obtain satisfactory 

classification results and shorter execution times versus those obtained with raw 

data.  

• Present a new combination of feature selection methods to get as good emotion 

recognition results as those obtained with the original features. 

At the end of the present study, we expect to confirm this hypothesis and contribute with 

two datasets that use active emotion elicitation methods with commercial BCI with fewer 

channels but with enough information about participants’ emotions so they can be detected and 

classified using a machine learning system. Also, we propose a schema for feature extraction 

and selection that allows better than state-of-the-art standards for classifiers’ performance for 

four class categorization and better processing times than if raw data is used. The time 

consideration is vital for systems that can be used in real-time.  

 The content of the present work is organized as follows: Chapter 2 presents an introduction 

to the topic. Chapter 3 shows the structure of EEG-based BCI systems for emotion recognition, 

and their principal processes are revised, i.e. (1) Signal acquisition, (2) preprocessing, (3) 

feature extraction, (4) feature selection, (5) classification, and (6) performance evaluation. 

Then, Chapter 4 presents a literature review that analyses the emotion recognition advances 

using EEG signals and BCI to (1) identify trends in algorithms and technology in this area, (2) 

detect potential errors that must be overcome for better results, and (3) identify possible 

knowledge gaps in the field. The aim is to distinguish what has already been done in systems 

implementations and catch a glimpse of what could lie ahead. Later, Chapter 5 treats the 

datasets acquisition for our work, and Chapter 6 presents the performed experimentation and 
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its results using different combinations of features and data. Finally, Chapter 7 presents the 

conclusions and future work.  
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2. BACKGROUND 

The present section introduces EEG-based BCI emotion recognition, representations, and 

band frequency association with emotions. 

2.1. Emotion Recognition using EEG-Based BCI 

Many studies suggest that emotional states are associated with electrical activity produced 

in the central nervous system [1]. Brain activity can be detected through its electrical signals by 

sensing its variations, locations, and functional interactions [4], and it can be done using EEG 

devices. EEG signals have an excellent temporal resolution and are a direct measurement of 

neuronal activity. These signals cannot be manipulated or simulated to fake an emotional state, 

providing thus reliable information. The challenge is to decode this information and map it to 

specific emotions. 

One affordable and convenient way to detect EEG signals is through EEG-based BCI 

devices that are non-invasive, low cost, and even wearable, such as helmets and headbands. 

The development of these tools has facilitated the emergence of much research in the emotion 

recognition field [5].  

As some scientists predict, the usability of EEG-based BCI devices will soon improve. 

Therefore, shortly, they could be used on an everyday basis for emotion detection for several 

purposes, such as emotion monitoring in health care facilities, gaming and entertainment, 

teaching-learning scenarios, and for optimizing workplace performance, among other 

applications [6]. 

2.2. Emotion Representations 

Emotions can be represented using different general models. The most used are the 

discrete and the dimensional models [5]. The discrete model identifies basic, innate, and 

universal emotions from which all other emotions can be derived. Some authors state that these 

primary emotions are happiness, sadness, anger, surprise, disgust, and fear [7]. Some 

researchers consider this model has limitations in representing specific emotions in a broader 

range of affective states.  

Alternatively, dimensional models can express complex emotions in a two-dimensional 

continuous space: Valence, arousal (VA), or in three dimensions: Valence, arousal, and 

dominance (VAD) [8]. The VA model has valence and arousal as axes. Valence rates positive 
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and negative emotions and ranges from happy to unhappy (or sad). Arousal measures 

emotions from calm to stimulated (or excited). Three-dimensional models add a dominance 

axis to evaluate from submissive (powerless) to empowered feelings. This representation 

distinguishes emotions that are jointly represented in the VA model. For instance, fear and 

anger have similar valence-arousal presentations on the VA plane [8]. Thus, three-dimensional 

models improve “emotional resolution” through the dominance dimension. In this example, fear 

is a submissive feeling, but anger requires power [9]. Hence, the dominance dimension 

improves the differentiation between these two emotions. 

Figure 1 shows a VA plane with the representation of basic emotions. The horizontal axis 

corresponds to valence dimensions, from positive to negative emotions. Likewise, the vertical 

axis corresponds to arousal. These two variables can be considered emotional state 

components [4]. Figure 2 presents the VAD space representing the same basic emotions. 

 

Figure 1. Emotional states in the Valence-Arousal space [10]. 

 

Figure 2. Emotional states in the Valence-Arousal-Dominance space [11]. 
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Table 1 shows that some researchers, studying EEG-based functional connectivity in the 

brain, have reported a relationship between specific brain areas and emotional states. Studies 

that take at-single-electrode-level analysis into account have shown that asymmetric activity at 

the frontal site in the alpha band is associated with emotion. Ekman and Davidson found that 

enjoyment activated the brain’s left frontal parts [12]. Another study found a left frontal activity 

reduction when volunteers adopted fear expressions [13]. Increased power in theta bands at 

the frontal midline is associated with pleasurable emotions, and the opposite has been 

observed with unpleasant feelings [14]. 

Table 1. Frequency bands associations [15],[16]. 

Band State Association Potential Localization Stimuli 

Gamma 
rhythm 
(above 
30 HZ) 

Positive valence. 
These waves are 

correlated with 
positive spiritual 
feelings. Arousal 

increases with high-
intensity visual 

stimuli. 

Different sensory and non-
sensory cortical networks. 

These waves appear caused by 
attention, multi-sensory 

information, memory, and 
consciousness. 

Beta (13 
to 30 Hz) 

They are related to 
visual self-induced 

positive and negative 
emotions. These 

waves are associated 
with alertness and 
problem-solving. 

Motor cortex. 

They are stimulated by motor 
activity, motor imagination, or 
tactile stimulation. Beta power 
increases during the tension of 
scalp muscles, which are also 

involved in frowning and smiling. 

Alpha (8 
to 13 Hz) 

They are linked to 
relaxed and wakeful 
states, feelings of 

conscious awareness, 
and learning. 

Parietal and occipital 
regions. 

Asymmetries reported: that 
rightward-lateralization of 
frontal alpha power during 

positive emotions, 
compared to negative or 

withdrawal-related 
emotions, originates from 
leftward-lateralization of 

prefrontal structures. 

These waves appear during 
relaxation periods with eyes shut 
while remaining still awake. They 
represent the visual cortex in a 

repose state. These waves slow 
down when falling asleep and 
accelerate when opening the 
eyes, moving, or even when 

thinking about the intention to 
move. 

Theta (4 
to 7 Hz) 

They appear in 
relaxation states, 
allowing better 

concentration in those 
cases. These waves 
also correlate with 
anxious feelings. 

The front central head 
region is associated with 
the hippocampal theta 

waves. 

Theta oscillations are involved in 
memory encoding and retrieval. 

Additionally, individuals that 
experience higher emotional 
arousal in a reward situation 

reveal an increase of theta waves 
in their EEG [16]. Theta coma 
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waves appear in patients with 
brain damage. 

Delta (0 
to 4 Hz) 

They are present in 
the deep NREM 3 

sleep stage. 

Since adolescence, 
their presence during 
sleep declines with 

advancing age. 

Frontal, temporal, and 
occipital regions. 

Deep sleep. These waves also 
have been found in continuous 

attention tasks [17]. 

 

Several studies confirm that frequency bands are related to affective responses. However, 

emotions are complex processes. The authors in [14] assert that recognizing different 

emotional states may be more valid if EEG-based functional connectivity is examined rather 

than a single analysis at the electrode level. Correlation, coherence, and phase synchronization 

indices between EEG electrodes to estimate functional connectivity between different brain 

locations. Likewise, differential entropy (DE) and its derivatives like differential asymmetry 

(DASM), rational asymmetry (RASM), and differential caudality (DCAU) measure functional 

dissimilarities. Such features are calculated through logarithmic power spectral density for a 

fixed-length EEG sequence, plus the differences and ratios between DE features of 

hemispheric asymmetry electrodes [18]. 

The growing consensus seems to be that a simple mapping between emotions and specific 

brain structures is inconsistent with observations of different emotions activating the same 

structure or one emotion activating several structures [19]. Additionally, functional connectivity 

between brain regions or signal complexity measures may help detect and describe emotional 

states [20]. 

2.3. EEG-Based BCI Systems for Emotion Recognition  

Figure 3 presents the structure of an EEG-based BCI system for emotion recognition. Such 

structure comprises the following processes: signal acquisition, preprocessing, feature 

extraction, feature selection, classification, and performance evaluation, which are explained 

in detail in this subchapter. 
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Figure 3. Processes of an EEG-based BCI for emotion recognition. 

2.4. Signal Acquisition 

Inexpensive wearable EEG helmets and headsets that use noninvasive electrodes along 

the scalp can efficiently acquire EEG signals. EEG is a recording of electrical activity in the 

brain over time [21]. Thus, electrodes capture signals, amplify them, and send them to a 

computer (or mobile device) for storage and processing. Currently, various low-cost EEG-

based BCI devices are available on the market [22]. However, many current models of EEG-

based BCI become uncomfortable after continued use. Therefore, it is still necessary to improve 

their usability. 

Public Databases 

Alternatively, there are also public databases with EEG data for affective information. Table 

2 presents a list of available datasets related to emotion recognition. Such datasets are 

convenient for research, and several emotion recognition studies have used them. 

Table 2. Publicly available datasets. 

Source Dataset 
Number of 
Channels 

Emotion 
Elicitation 

Number of 
Participants 

Target Emotions 

[19] DEAP 
32 EEG 
channels 

Music videos 32 
Valence, arousal, 
dominance, liking 

[23] eNTERFACE’06 
54 EEG 
channels 

Selected images 
from IAPS. 

5 
Calm, positive, 

exciting, negative 
exciting 

[24] headIT - 
Recall past 
emotions 

31 
Positive valence 

(joy, happiness) or 
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negative valence 
(sadness, anger) 

[25] SEED 
62 

channels 
Film clips 12 

Positive, negative, 
neutral 

[26] SEED-IV 
62 

channels 
72 film clips 15 

Happy, sad, 
neutral, fear 

[27] 
Mahnob-HCI-

tagging 
32 

channels 

Fragments of 
movies and 

pictures. 
30 

Valence and 
arousal rated with 

the self-
assessment 

manikin 

[28] 
EEG Alpha 

Waves dataset 
16 

channels 

Resting-state eyes 
open/closed 
experimental 

protocol 

20 Relaxation 

[29] DREAMER 
14 

channels 
Film clips 23 

Rating 1 to 5 to 
valence, arousal, 
and dominance 

[30] AMIGOS 
14 

channels 
Videos  40 

Valence, arousal, 
dominance, 

familiarity, and 
liking 

[31] RCLS 
64 

channels 

Native Chinese 
Affective Video 

System 
 

14 
Happy, sad, and 

neutral 

 

Emotion Elicitation 

The International Affective Picture System (IAPS) [32] and the International Affective 

Digitized Sound System (IADS) [33] are the most popular resources for emotion elicitation. 

These datasets provide emotional stimuli in a standardized way. Hence, IAPS and IADS are 

helpful for experimental research. 

IAPS consists of 1200 images divided into 20 sets of 60 photos. Valence and arousal values 

are tagged for each photograph. IADS’ latest version provides 167 digitally recorded natural 

sounds familiar in daily life, with sounds labeled for valence, arousal, and dominance. 

Participants labeled the dataset using the Self-Assessment Manikin system [11]. IAPS and 

IADS stimuli are accessible with labeled information, which is convenient for constructing 

ground truth for emotion assessment [34]. 

Other researchers used movie clips, which have also been shown to provoke emotions. In 

[35], the authors state that emotions using visual or auditory stimuli are similar. However, 

results obtained through affective labeling of multimedia may not be generalizable to more 
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interactive situations or everyday circumstances. Thus, new studies using interactive emotional 

stimuli to ensure the generalizability of results for BCI are welcomed. 

Numerous experiments stimulated emotions in different settings, but they did not use EEG 

devices. However, they collected other physiological indicators like heart rate, skin galvanic 

changes, and respiration rate. Conceptually, such paradigms could be helpful if they are 

replicated for EEG signal acquisition. Possible experiments include stress during interviews to 

detect anger, anxiety, rejection, and depression. Exposure to odorants triggers emotions, such 

as anger, disgust, fear, happiness, sadness, and surprise. Harassment provokes fear. A threat 

of short-circuit or a sudden backward-tilting chair elicits fear. A thread of shock causes anxiety. 

Naturally, these EEG-based BCIs experiments should take into account ethical considerations. 

To our knowledge, only a few studies have used more interactive conditions where 

participants played games or used flight simulators to induce emotions [36][37]. Alternatively, 

some authors have successfully used auto-induced emotions through memory recall [38]. 

Normalization 

EEG signals vary widely in amplitude depending on age, sex, and other factors like changes 

in subjects’ alertness during the day. Hence, it is necessary to normalize measured values to 

deal with this variability. 

There are three possible approaches to normalization. The first is to record reference 

conditions without stimulus on the subject. The values obtained can be normalized by 

subtracting the reference value, then dividing by the reference value (or subtracting the 

reference value), and then dividing by that same value. The second approach also requires 

reference conditions. Those values are included in the feature vector, which will have twice the 

characteristics that make up the “baseline matrix.” The third approach normalizes the data 

separately by obtaining a specific range, for example, between −1 and 1. This method applied 

to each feature independently ensures that all characteristics have the same value ranges 

[39],[40]. 

The effect of normalization and its influence on the entire process of emotion recognition is 

not yet evident. However, some studies show that normalization allows the characteristics to 

be generalized in cross-subject emotion recognition. Tangentially, data normalization helps 

machine learning algorithms’ efficiency due to faster convergence. 
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2.5. Preprocessing 

EEG signals’ preprocessing relates to signal cleaning and enhancement. EEG signals are 

weak and easily contaminated by internal and external noise sources. Thus, these processes 

are essential to avoid noise contamination affecting posterior classification. The body itself may 

produce electrical impulses through blinking, eye or muscular movement, or even heartbeats 

that blend with EEG signals. It should be carefully considered whether these artifacts should 

be removed because they may have relevant emotional state information and could improve 

emotion recognition algorithms’ performance. If filters are used, it is necessary to be cautious 

to avoid signal distortions. 

The three commonly used filter types in EEG are (1) low-pass filters, (2) high-pass filters, and 

(3) notch filters. The first two filters filter frequencies between 1 and 50–60 Hz. Filters such as 

Butterworth, Chebyshev, or inverse Chebyshev for EEG signal processing are preferred [40]. 

Each of them has specific features that need to be analyzed. A Butterworth filter has a flat 

response in the passband, the stopband, and a broad transition zone. The Chebyshev filter has 

a ripple on the passband, and a steeper transition, so it is monotonic on the stopband. The 

inverse Chevishev has a flat response in the passband. It is narrow in the transition and has a 

ripple in the stopband. To avoid this problem, a Butterworth phase zero filter should be used to 

prevent a phase shift because this filter goes forward and backward over the signal. 

Another preprocessing objective is to clean the noise that may correspond to low-frequency 

signals generated by an external source, such as power line interference [21]. Notch filters are 

used to stop the passage of a specific frequency rather than a frequency range. This filter is 

designed to eliminate frequencies originated by electrical networks, and it typically ranges from 

50 to 60 Hz depending on the electrical signal’s frequency in the specific country. 

All these filters are appropriate for artifact elimination in EEG signals. However, as 

previously noted, care must be taken when using filters. Generally, filters could distort the EEG 

signal’s waveform and structure in the time domain. Hence, filtering should be kept to a 

minimum to avoid the loss of EEG signal information. 

Nevertheless, preprocessing helps to separate different signals and sources. Table 3 shows 

methods used for preprocessing EEG signals [41] and the percentage in which they are 

mentioned in the literature from 2015 to 2022. Independent Component Analysis (ICA) and 

Principal Component Analysis (PCA) are tools that apply blind source analysis to isolate the 
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source signal from noise when using multi-channel recordings. ICA and PCA can be used for 

artifact removal and noise reduction. Common Average Reference (CAR) is suitable for noise 

reduction. SL is applied for spatial filtering to improve the signal’s spatial resolution. The 

Common Spatial Patterns (CSP) algorithm finds spatial filters to distinguish signals 

corresponding to muscular movements. 

Therefore, each of the discussed preprocessing algorithms has its advantages and 

limitations. In Table 3, we can observe from the percentage of the usage column that the most 

utilized algorithms for preprocessing are PCA (50.1%), ICA (26.8%), and CSP (17.7%). These 

values are obtained by computing the proportion of each algorithm used in the different 

implementations’ processes in the 60 papers we analyzed in the literature review. 

Table 3. Frequently used pre-preprocessing methods of EEG signals. 

Preprocessing 
Method 

Main Characteristics Advantages Limitations 

Literature’s 
Usage 

Statistics 
% (2015–

2022) 

Independent 
component 

analysis (ICA) 
[42] 

ICA separates artifacts from EEG 
signals into independent 
components based on the data’s 
characteristics without relying on 
reference channels. It 
decomposes the multi-channel 
EEG data into temporal separate 
and spatial-fixed components. It 
has been applied for ocular 
artifact extraction. 

ICA efficiently 
separates 
artifacts from 
noise 
components. 
ICA 
decomposes 
signals into 
temporal 
independent 
and spatially 
fixed 
components. 

ICA is 
successful 
only under 
specific 
conditions 
where one of 
the signals is 
greater than 
the others. 
The quality of 
the corrected 
signals 
depends 
strongly on 
the quality of 
the artifacts. 

26.8 

Common 
Average 

Reference 
(CAR) [43], [44] 

CAR is used to generate a 
reference for each channel. The 
algorithm obtains an average of 
all the recordings on every 
electrode and then uses it as a 
reference. The result is an 
improvement in the Signal to 
Noise Ratio quality. 

CAR 
outperforms 
standard types 
of electrical 
referencing, 
reducing noise 
by >30%. 

The average 
calculation 
may present 
problems for 
finite sample 
density and 
incomplete 
head 
coverage. 

5.0 

Surface 
Laplacian (SL) 

[45]–[48] 

SL is a way of viewing the EEG 
data with high spatial resolution. 
It estimates current density 
entering or leaving the scalp 
through the skull, considering the 

SL estimates 
are reference-
free, meaning 
that any EEG 
recording 

It is sensitive 
to artifacts 
and spline 
patterns. 

0.4 
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Preprocessing 
Method 

Main Characteristics Advantages Limitations 

Literature’s 
Usage 

Statistics 
% (2015–

2022) 

volume conductor’s outer shape, 
and does not require details of 
volume conduction. 

reference 
scheme will 
render the 
same SL 
estimates. 
SL enhances 
the spatial 
resolution of 
the EEG 
signal. 
SL does not 
require any 
additional 
assumptions 
about 
functional 
neuroanatomy. 

Principal 
Component 

Analysis (PCA) 
[35,50–55] 

PCA finds patterns in data. It can 
be pictured as a rotation of the 
coordinate axes so that they are 
not along with single time points. 
Still, linear combinations of sets 
of time points collectively 
represent a pattern within the 
signal. PCA rotates the axes to 
maximize the variance within the 
data along the first axis, 
maintaining their orthogonality. 

PCA helps in 
the reduction 
of feature 
dimensions. 
The ranking 
will be done, 
and it will help 
classify data. 

PCA does not 
eliminate 
noise, but it 
can reduce it. 
PCA 
compresses 
data 
compared to 
ICA and 
allows for 
data 
separation. 

50.1 

Common 
Spatial 

Patterns (CSP)  
[55]–[57] 

CSP applies spatial filters that 
discriminate different classes of 
EEG signals. For instance, those 
corresponding to different motor 
activity types. CSP also 
estimates covariance matrices. 

CSP does not 
require a priori 
selection of 
sub-specific 
bands and 
knowledge of 
these bands. 

CSP requires 
many 
electrodes. 
Changes in 
electrode 
location may 
affect 
classification 
accuracies. 

17.7 

 

2.6. Feature Extraction 

Once signals are noise-free, the BCI needs to extract essential features, which will be fed 

to the classifier. Features can be computed in the domain of (1) time, (2) frequency, (3) time-

frequency, or (4) space, as shown in Table 4 [31,38,39]. This table presents the most popular 

techniques used for feature extraction, their domain, advantages, and limitations. 
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Time-domain features include the event-related potential (ERP), Hjorth features, and 

higher-order crossing (HOC) [58], [60], independent component analysis (ICA), principal 

component analysis (PCA), and Higuchi’s fractal dimensions (FD) as a measure of signal 

complexity and self-similarity in this domain. There are also statistical measures, such as 

power, mean, standard deviation, variance, skewness, kurtosis, relative band energy, and 

entropy. The latter evaluates signal randomness [61]. 

The most popular frequency-domain method is the Fast Fourier transform (FFT). Auto-

regressive (AR) modeling is an alternative to Fourier-based methods for computing the 

frequency spectrum of a signal [62],[63]. 

The time-frequency domain exploits variations in time and frequency, which are very 

descriptive of the neural activities. For this, wavelet transform (WT) and wavelet packet 

decomposition (WPD) are used [62]. 

The spatial information provided in the description of EEG signals’ characteristics is also 

considered broader. For this dimension, signals are referenced to digitally linked ears (DLE) 

values, which are calculated in terms of the left and right earlobes as follows: 

𝑉𝑒
𝐷𝐿𝐸  =  𝑉𝑒 −

1

2
(𝑉𝐴1 + 𝑉𝐴2), (1) 

VA1 and VA2 are the reference voltages on the left and right earlobe. These references 

allow finding the absolute potential corresponding to a given scalp area, where an electrode is 

located. Consequently, each channel contains spatial information of the location pertinent to its 

source. 

The surface Laplacian (SL) algorithm dramatically reduces volume conduction effects for 

spatial computation. SL also improves EEG spatial resolution by reducing the distortion 

produced by volume conduction and reference electrodes [47]. 

Figure 4 shows EEG signals in the time domain, the frequency domain, and spatial 

information. 
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Figure 4. Frequency domain, time domain, and spatial information [63]. 

Table 4. Feature extraction algorithms. 

Feature Extraction 
Method 

Main 
Characteristics 

Domain Advantages Limitations 

Literature’s 
usage 

statistics 
% (2015–

2022) 

ERP [17], [21], [64]–
[69] 

The brain 
responds to a 
sensory, 
cognitive, or 
motor event. 
Two sub-
classifications 
are (1) evoked 
potentials and 
(2) induced 
potentials. 

Time 

It has an 
excellent 
temporal 
resolution. 
ERPs provide 
a measure of 
the processing 
between a 
stimulus and a 
response. 

ERP has a 
poor spatial 
resolution, so 
it is not useful 
for research 
questions 
related to the 
activity 
location. 

2.6 

Hjorth Features  
[52,59,60] 

These are 
statistical 
indicators 
whose 
parameters are 

Time 

Low 
computational 
cost 
appropriate for 

Possible 
statistical bias 
in signal 
parameter 
calculations 

17.1 
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Feature Extraction 
Method 

Main 
Characteristics 

Domain Advantages Limitations 

Literature’s 
usage 

statistics 
% (2015–

2022) 

normalized 
slope 
descriptors. 
These 
indicators are 
activity 
(variance of a 
time function), 
mobility (mean 
frequency of the 
proportion of 
standard 
deviation of the 
power 
spectrum), and 
complexity 
(change in 
frequency 
compared to the 
signal’s 
similarity to a 
pure sine 
wave). 

real-time 
analysis. 

Statistical Measures  
[39,40,42,52,61–70] 

Signal statistics: 
power, mean, 
standard 
deviation, 
variance, 
kurtosis, relative 
band energy. 

Time 
Low 
computational 
cost. 

- 8.7 

DE 
[1,10,11,15,59,68,71–

84] 

Entropy shows 
scattering in 
data. 
Differential 
Entropy can 
reflect spatial 
signal 
variations. 

Time–
spatial 

Entropy and 
derivate 
indexes reflect 
the intra-
cortical 
information 
flow. 

 5.1 

HOC [1,2,42,63,85–
88] 

Oscillation in 
times series can 
be represented 
by counts of 
axis crossing 
and its 
differences. 
HOC displays a 
monotone 
property whose 
rate of increase 
discriminates 

Time 

HOC reveals 
the oscillatory 
pattern of the 
EEG signal 
providing a 
feature set 
that conveys 
emotional 
information to 
the 
classification 
space. 

The training 
process is 
time-
consuming 
due to the 
dependence 
of the HOC 
order on 
different 
channels and 
different 
channel 

2.2 
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Feature Extraction 
Method 

Main 
Characteristics 

Domain Advantages Limitations 

Literature’s 
usage 

statistics 
% (2015–

2022) 

between 
processes. 

combinations 
[60]. 

ICA [20,37,53,69,89–
91] 

ICA is a signal 
enhancing 
method and a 
feature 
extraction 
algorithm. ICA 
separates 
components 
that are 
independent of 
each other 
based on the 
statistical 
independence 
principle. 

Time. 
There is 
also a 
FastICA in 
the 
frequency 
domain. 

ICA efficiently 
separates 
artifacts from 
noise 
components. 
ICA 
decomposes 
signals into 
temporal 
independent 
and spatially 
fixed 
components. 

ICA is only 
useful under 
specific 
conditions 
(one of the 
signals is 
greater than 
the others).  
The quality of 
the corrected 
signals 
depends 
strongly on 
the quality of 
the isolated 
artifacts.  

11.1 

PCA 
[33,40,52,69,92–95] 

The PCA 
algorithm is 
mainly used for 
feature 
extraction but 
could also be 
used for feature 
extraction. It 
reduces the 
dimensionality 
of the signals 
creating new 
uncorrelated 
variables. 

Time 

PCA reduces 
data 
dimensionality 
without 
information 
loss. 

PCA assumes 
that the data 
is linear and 
continuous. 

19.7 

WT [48] 

The WT method 
represents the 
original EEG 
signal with 
secured and 
straightforward 
building blocks 
known as 
wavelets, which 
can be discrete 
or continuous. 

Time-
frequency 

WT describes 
the features of 
the signal 
within a 
specified 
frequency 
domain and 
localized time 
domain 
properties. It is 
used to 
analyze 
irregular data 
patterns. 
It uses 
variable 
windows, wide 
for low 

High 
computational 
and memory 
requirements. 

26.0 
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Feature Extraction 
Method 

Main 
Characteristics 

Domain Advantages Limitations 

Literature’s 
usage 

statistics 
% (2015–

2022) 

frequencies 
and narrow for 
high 
frequencies. 

AR [48] 

AR is used for 
feature 
extraction in the 
frequency 
domain. AR 
estimates the 
EEG's power 
spectrum 
density (PSD) 
using a 
parametric 
approach. The 
estimation of 
PSD is 
achieved by 
calculating the 
coefficients or 
parameters of 
the linear 
system under 
consideration. 

Frequency 
domain 

AR is used for 
feature 
extraction in 
the frequency 
domain. 
AR limits the 
leakage 
problem in the 
spectral 
domain and 
improves 
frequency 
resolution.  

The order of 
the model in 
the spectral 
estimation is 
challenging to 
select. 
It is 
susceptible to 
biases and 
variability. 

1.6 

WPD [95] 

WPD generates 
a sub-band tree 
structuring 
since a full 
binary tree can 
characterize the 
decomposition 
process. WPD 
decomposes 
the original 
signals 
orthogonally 
and 
independently 
from each other 
and satisfies the 
law of 
conservation of 
energy. The 
energy 
distribution is 
extracted as the 
feature. 

Time-
frequency 

WPD can 
analyze non-
stationary 
signals such 
as EEG. 

WPD uses a 
high 
computational 
time to 
analyze the 
signals. 

1.6 

FFT [48] 
FFT is an 
analysis method 

Frequency 
FFT has a 
higher speed 

FFT has low-
frequency 

2.2 
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Feature Extraction 
Method 

Main 
Characteristics 

Domain Advantages Limitations 

Literature’s 
usage 

statistics 
% (2015–

2022) 

in the frequency 
domain. EEG 
signal 
characteristics 
are reviewed 
and computed 
using power 
spectral density 
(PSD) 
estimation to 
selectively 
represent the 
EEG sample 
signal. 

than all the 
available 
methods for 
real-time 
applications. 
It is a useful 
tool for 
stationary 
signal 
processing.  

resolution and 
high spectral 
loss of 
information, 
making it hard 
to find the 
actual 
frequency of 
the signal. 

Functional EEG 
connectivity indices 

[14]  

EEG-based 
functional 
connectivity is 
estimated in the 
frequency 
bands for all 
pairs of 
electrodes 
using 
correlation, 
coherence, and 
phase 
synchronization 
index. 
Repeated 
variance 
measures for 
each frequency 
band were used 
to determine 
different 
connectivity 
indices among 
all pairs. 

Frequency 

Connectivity 
indices at 
each 
frequency 
band can be 
used as 
features to 
recognize 
emotional 
states. 

Difficult to 
generalize 
and 
distinguish 
individual 
differences in 
functional 
brain activity. 

1.3 

Rhythm [13],[56] 

Detection of 
repeating 
patterns in the 
frequency band 
or “rhythm.” 

Frequency 

Specific band 
rhythms 
contribute to 
emotion 
recognition. 

- 0.1 

Graph Regularized 
Sparse Linear 

Regularized GRSLR 
[31] 

This method 
applies a graph 
regularization 
and a sparse 
regularization 
on the 
transform matrix 

Frequency 

It can 
simultaneously 
cope with 
sparse 
transform 
matrix learning 
while 

- 0.2 
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Feature Extraction 
Method 

Main 
Characteristics 

Domain Advantages Limitations 

Literature’s 
usage 

statistics 
% (2015–

2022) 

of linear 
regression 

preserving the 
intrinsic 
manifold of the 
data samples. 

Granger causality 
[63], [96] 

This feature is a 
statistical 
concept of 
causation that is 
based on 
prediction. 

Frequency 

The authors 
can analyze 
the brain’s 
underlying 
structural 
connectivity. 

These 
features only 
give 
information 
about the 
linear 
characteristics 
of signals. 

0.5 

 

According to [97], emotions emerge as the synchronization of various subsystems. Several 

authors use synchronized activity indexes in different parts of the brain. The efficiency of these 

indexes has been demonstrated in [98], calculating the correlation dimension of a group of EEG 

signals. In [98], other methods were used to calculate the synchronization of different brain 

areas. Synchronized indexes are a promising method for emotion recognition that deserves 

further research. 

Table 4 shows the most commonly used algorithms and their respective mention 

percentages in the literature: (1) WT (26%), (2) PCA (19.7%), (3) Hjorth (17%), (4) ICA (11.3%), 

and (5) statistical measures (8.6%).  

2.7. Feature Selection 

The feature selection process is vital because it obtains the signal’s properties that best 

classify the EEG characteristics. In BCI systems, the feature vector generally has high 

dimensionality [99]. Feature selection reduces the number of input variables for the classifier 

(not to be confused with dimensionality reduction). While both processes decrease the data’s 

attributes, dimensionality reduction combines features to reduce their quantity. 

A feature selection method does not change characteristics but excludes some according 

to specific usefulness criteria. Feature selection methods aim to achieve the best results by 

processing the least amount of data. It removes attributes that do not contribute to the 

classification because they are irrelevant (or redundant) for simpler classification models (which 

are faster and perform better). Additionally, feature selection methods reduce the overfitting 
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likelihood in regular datasets, flexible (complex) models, or when the dataset has too many 

features but not enough observations. Flexible models correspond to more complex 

mathematical expressions that may work well in training but could present problems in new test 

data (overfitting). 

One classification of feature selection methods based on the number of variables divides 

them into two classes: (1) Univariate and (2) multivariate. Univariate methods consider the input 

features one by one. Multivariate methods consider whole groups of characteristics together 

[100]. 

Another classification distinguishes feature selection methods as filtering, wrapper, and 

built-in algorithms [73]. 

• Filter methods evaluate features using the data’s intrinsic properties. Additionally, most 

filtering methods are univariate, so each feature is self-evaluated. These methods are 

appropriate for large data sets because they are less computationally expensive. 

• Wrapping methods depend on classifier types when selecting new features based on their 

impact on characteristics already chosen. Only features that increase accuracy are 

chosen. 

• Built-in methods run internally in the classifier algorithms, such as deep learning. This type 

of process requires less computation than wrapper methods. 

Examples of Feature Selection Algorithms 

The following are some examples of algorithms for feature selection: 

• Effect-size (ES)-based feature selection is a filter method. 

ES-based univariate: Cohen’s is an appropriate effect size for comparing two means 

[101]. So, if two groups’ means do not differ by 0.2 standard deviations or more, the 

difference is trivial, even if it is statistically significant. The effect size is calculated by taking 

the difference between the two groups and dividing it by the standard deviation of one of 

the groups. Univariate methods may discard features that could have provided helpful 

information. 

ES-based multivariate helps remove several features with redundant information, 

therefore selecting fewer features while retaining the most information [58]. It considers all 

the dependencies between characteristics when evaluating them—for example, 

calculating the Mahalanobis distance using the covariance structure of the noise. 
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Min-redundancy max-relevance (mRMR) is a wrapper method [102]. This algorithm 

compares the mutual information between each feature with each class at the output. 

Mutual information between two random variables x and y is calculated to identify if they 

are statistically independent [58]. mRMR maximizes I (xi, y) between each characteristic xi 

and the target vector y; and minimizes the average mutual information I (xi, yi) between 

two characteristics. 

• Genetic algorithms reduce the feature vector's dimensionality using evolutionary methods, 

leaving only more informative features [2,86,97]. 

• Stepwise discriminant analysis SDA [73]. SDA extends the statistical tool for discriminant 

analysis that includes the stepwise technique. 

• Fisher score is a feature selection technique to calculate the interrelation between output 

classes and each feature using statistical measures [102]. 

Table 5 shows feature selection algorithms and their usage percentage in the literature 

according to the systematic review prepared in the present thesis, which is shown in Section 

3. Genetic algorithms are frequently used (32.3%), followed by SDA (17.7%), wrapper methods 

(15.6%), and mRMR (11.5%). 

Table 5. Feature selection methods used in the literature (2015–2020) in (%). 

Feature Selection Method Literature’s Usage Statistics % (2015–2022) 

min-Redundancy Max-Relevance mRMR 11.5% 

Univariate 5.3% 

Multivariate 6.3% 

Genetic Algorithms 32.3% 

Stepwise Discriminant Analysis SDA 17.6% 

Fisher score 7.3% 

Wrapper methods 15.6% 

Built-in methods 4.1% 
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2.8. Classification Algorithms 

Model frameworks can categorize classification algorithms [56],[57]. The model’s 

categories may be (1) generative-discriminative, (2) static-dynamic, (3) stable-unstable, and 

(4) regularized [103]–[105]. 

Two selection approaches for the classifier work best under certain conditions in emotion 

recognition [56]. The first identifies the best classifier for a given BCI device. The second 

specifies the best classifier for a given set of features. 

For synchronous BCIs (cue-paced), dynamic classifiers and ensemble combinations have 

shown better performances than Support Vector Machine (SVM). For asynchronous BCIs (self-

paced), the authors in this field have not determined an optimal classifier. However, dynamic 

classifiers perform better than static classifiers [56] because they better identify the onset of 

mental processes. 

From the second approach, discriminative classifiers have been found to perform better 

than generative classifiers, principally in the presence of noise or outliers. Dynamic classifiers 

and SVM generally handle high dimensionality in the features better. If a small training set 

exists, simple techniques like Linear Discriminant Analysis (LDA) classifiers may yield 

satisfactory results [58]. 

Generative Discriminative 

These classification models generally have supervised learning problems that fit the data’s 

probability. A generative model specifies the distribution of each class using the joint probability 

distribution p(x,y) and Bayes theorem. A discriminative model finds the decision boundary 

between the categories using the conditional probability distribution p(y|x). Such a model 

includes the following classifiers: Naïve Bayes, Bayesian networks, Markov random fields, and 

hidden Markov models (HMM). 

Static-Dynamic Classification 

If the training time is offline or online, a classifier is categorized as static or dynamic. A static 

model trains the data once offline and then uses the trained model to classify a single feature 

vector. In a dynamic model, the system is online and updated continually. Thus, dynamic 

models can obtain a sequence of feature vectors and catch temporal dynamics [99]. 
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Multilayer perceptron (MLP) can be considered a static classifier. Likewise, an example of 

a dynamic classifier is hidden Markov methods (HMM) because it can classify a sequence of 

feature vectors. 

Stable Unstable 

Stable classifiers usually have low complexity and do not affect their performance with minor 

variations of the training set. For example, k Nearest Neighbors (kNN) is a standard stable 

classifier. Unstable classifiers have high complexity and present considerable changes in 

performance with minor variations of the training set. Examples of unstable classifiers are linear 

support vector machine (SVM), multi-layer perceptron (MLP), and bilinear recurrent neural 

network (BLR-NN) [99]. 

Regularized 

Regularization consists of carefully controlling classifier complexity to prevent overtraining. 

These classifiers have excellent generalization performance. Examples of these classifiers are 

regularized Fisher LDA (RF-LDA), linear SVM, and radial basis function kernel for support 

vector machine (RBF-SVM) [106]. 

General Taxonomy of Classification Algorithms  

Another taxonomy divides classifiers using their properties to distinguish them into general 

algorithms: linear, neural networks, nonlinear Bayesian, nearest neighbor classifiers, and 

combinations of systems (ensemble). Most of the more specialized algorithms can be 

generated from these general types. Table 6 shows this taxonomy criterion with five different 

categories of general classifiers: (1) Linear, (2) neural networks, (3) nonlinear Bayesian, (4) 

nearest neighbor classifiers, and (5) combinations of classifiers or ensemble [44,56,58]. 

All general classifiers have characteristics of each of the previously mentioned framework 

models. For instance, SVM is discriminant, static, stable, and regularized; HMM is generative, 

dynamic, unstable, and not regularized; and kNN is discriminant, static, stable, and not 

regularized.  

Consequently, the suggested guidelines for classifier selection are also applicable in this 

categorization. Table 6 presents the usage statistics of these classifiers in the 2015–2020 

literature. The following are the most noteworthy classifiers: Neural networks CNN (46.16%), 
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Linear classifiers SVM (30.3%), LDA (5.5%), Nearest Neighbors kNN (4.5%), and Ensembled 

classifier AdaBoost (3.9%). 

Table 6. Categories of general classifiers. 

Category of 
Classifier 

Description 

Examples of 
Algorithms 

in the 
Category 

Advantages Limitations 
Literature’s 

Usage Statistics 
% (2015–2022) 

Linear 

Discriminant 
algorithms that 
use linear 
functions 
(hyperplanes) to 
separate classes. 

Linear 
Discriminant 
Analysis LDA 
[65]. 
Bayesian 
Linear 
Discriminant 
Analysis 
BLDA. 
Support 
Vector 
Machine SVM 
[107],[108]. 
Graph 
Regularized 
Sparse Linear 
Regularized 
GRSLR [31]. 

These 
algorithms 
have 
reasonable 
classification 
accuracy and 
generalization 
properties. 

Linear 
algorithms 
tend to have 
poor 
outcomes in 
processing 
complex 
nonlinear EEG 
data. 

LDA 5.20 
BLDA 1.40 
SVM 30.30 

GRSLR 0.02 

Neural 
networks 

(NN) 

NN are 
discriminant 
algorithms that 
recognize the 
underlying 
relationship of 
data resembling 
the human brain 
operation. 

Multilayer 
Perceptron 
MLP [109]. 
Long Short-
term Memory 
Recurrent 
Neural 
Network 
LSTM-RNN 
[66–69]. 
Domain 
Adversarial 
Neural 
Network 
DANN [110]. 
Convolutional 
Neural 
Network CNN 
[68,70–
73,[112]–
[113]. 
Complex-
Valued 
Convolutional 
Neural 
Network 

NN generally 
yields good 
classification 
accuracy 

Sensitive to 
overfitting with 
noisy and non-
stationary data 
as EEGs. 

MLP 1.60 
LSTM 1.10 
DANN0.20 
CNN 46.36 

CVCNN 0.40 
GSCNN 0.40 

GSLTFCNN  0.02 
CapsNet-NN 0.10 
GELM–NN 0.10 
FBC-CNN 0.10 
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CVCNN 
[107]. 
Gated-Shape 
Convolutional 
Neural 
Network 
GSCNN 
[107]. 
Global Space 
Local Time 
Filter 
Convolutional 
Neural 
Network 
GSLTFCNN 
[107]. 
CapsNet-NN  
Genetic 
Extreme 
Learning 
Machine 
GELM–NN 
[87]. 

      

Nonlinear 
Bayesian 
classifier 

Generative 
classifiers produce 
nonlinear decision 
boundaries. 

Bayes 
quadratic BC 
[111]. 
Hidden 
Markov Model 
HMM 
[50],[114]. 
 

Generative 
classifiers 
reject 
uncertain 
samples 
efficiently. 

For Bayes 
quadratic, the 
covariance 
matrix cannot 
be estimated 
accurately if 
the 
dimensionality 
is vast and 
there are 
insufficient 
training 
sample 
patterns. 

BC 0.10 
HMM 0.30 

Nearest 
neighbor 
classifiers 

Discriminative 
algorithms that 
classify cases 
based on their 
similarity to other 
samples 

k-Nearest 
Neighbors 
kNN [115]. 
Mahalanobis 
Distance MD 
[116]. 

kNN has 
excellent 
performance 
with low-
dimensional 
feature 
vectors. 
Mahalanobis 
Distance is a 
simple but 
efficient clear, 
suitable even 
for 
asynchronous 
BCI. 

kNN has 
reduced 
performance 
for classifying 
high 
dimension 
feature 
vectors or 
noise distorted 
features. 

KNN 4.5 
MD 0.1 

Combination 
of classifiers 

Combined 
classifiers using 

Ensemble 
methods can 

Variance 
reduction 

Quality 
measures are 

Ensemble 2.1 
Random-Forest 1.1 
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(ensemble-
learning) 

boosting, voting, 
or stacking. 
Boosting consists 
of several 
cascading 
classifiers. In 
voting, classifiers 
have scores, 
which yield a 
combined score 
per class, and a 
final class label. 
Stacking uses 
classifiers as 
meta-classifier 
inputs. 

combine 
almost any 
type of 
classifier 
[117]. 
Random 
Forest [9], 
[118]. 
Bagging Tree 
BT [113], 
[117]. 
XGBoost 
[119] 
AdaBoost 
[120] 

leads to an 
increase in 
classification 
accuracy. 

application-
dependent. 

BT 0.2 
XGBoost 0.4 
AdaBoost 3.9 

 

2.9. Performance Evaluation 

Results must be reported consistently so that different research groups can understand and 

compare them. Hence, evaluation procedures need to be chosen and described accurately. 

Evaluation of the classifier’s execution involves addressing performance measures, error 

estimation, and statistical significance testing [121]. Performance measures and error 

estimation configure the fulfillment rate of the classifier’s function. The most recommended 

performance evaluation measures are shown in Table 7. They are confusion matrix, accuracy, 

error rating, and other measures obtained from the confusion matrix, such as the recall, 

specificity, precision, Area Under the Curve (AUC), and F-measure. Other performance 

evaluation coefficients are Cohen’s kappa (k) [122], information transfer rate (ITR) [65], and 

written symbol rate (WSR) [122]. 

Performance evaluation and error estimation may need to complement a significance 

evaluation. This situation is because high accuracy can have little impact if the sample size is 

too small or classes are imbalanced (labeled EEG signals typically are). Therefore, significance 

classification is essential. General approaches can handle arbitrary class distributions to verify 

accuracy values significantly above certain levels. Used methods are the theoretical level of 

random classification and adjusted Wald confidence interval for classification accuracy. 

The theoretical level of the random classification test is the sum of the products between 

the experimental results’ classification probability and the probability calculated if all the 

categorization randomly occurs. This approach can only be used after performing the 

classification [123]. 
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Adjusted Wald confidence interval gives the lower and upper confidence limits for the 

probability of the correct classification, which specifies the intervals for the classifier 

performance evaluation index [124]. 

Table 7. Conventional performance evaluation methods for BCI. 

Performance 
Evaluation 

Main characteristics Advantages Limitations 

Confusion 
matrix 

The confusion matrix 
presents the number of 
correct and erroneous 
classifications specifying the 
erroneously categorized 
class. 

The confusion matrix 
gives insights into the 
classifier’s error 
types (correct and 
incorrect predictions 
for each class). 
It is a good option for 
reporting results in 
M-class 
classification. 

Results are difficult to 
compare and discuss. 
Instead, some authors use 
some parameters extracted 
from the confusion matrix. 

Accuracy 
and error 

rate 

The accuracy p is the 
probability of correct 
classification in a certain 
number of repeated 
measures. 
The error rate is e = 1 − p 
and corresponds to the 
probability that an incorrect 
classification has been 
made. 

It works well if the 
classes are 
balanced, i.e., an 
equal number of 
samples belong to 
each class. 

Accuracy and error rate do 
not consider whether the 
dataset is balanced or not. If 
one class occurs more than 
another, the evaluation may 
appear high for accuracy 
even though the 
classification is not 
performing well. 
These parameters depend 
on the number of classes 
and the number of cases. In 
a 2-class problem, the 
chance level is 50%, but with 
a confidence level 
depending on the number of 
cases. 

Cohen’s 
kappa (k) 

k is an agreement 
evaluation between nominal 
scales. This index 
measures the agreement 
between a true class and a 
classifier output. 1 is a 
perfect agreement, and 0 is 
a pure chance agreement. 

Cohen’s kappa 
returns the 
theoretical chance 
level of a classifier. 
This index evaluates 
the classifier 
realistically. If k is 
low, the confusion 
matrix would not 
have a meaningful 
classification even 
with high accuracy 
values. 
This coefficient 
presents more 
information than 
simple percentages 
because it uses the 

This coefficient has to be 
interpreted appropriately. It 
is necessary to report the 
bias and prevalence of the k 
value and test the 
significance for a minimum 
acceptable level of 
agreement. 
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entire confusion 
matrix.  

Sensitivity 
or Recall 

Sensitivity, also called 
Recall, identifies the true 
positive rate for describing 
the accuracy of 
classification results. It 
evaluates the proportion of 
correctly identified true 
positives related to the sum 
of true positives plus false 
negatives. 

Sensitivity measures 
how often a classifier 
correctly categorizes 
a positive result. 

The Recall should not be 
used when the positive class 
is larger (imbalanced 
dataset), and correct 
detection of positive samples 
is less critical to the problem. 

Specificity Specificity is the ability to 
identify a true negative rate. 
It measures the proportion 
of correctly identified true 
negatives over the sum of 
the true negatives plus false 
positives. 
The False Positive Rate 
(FPR) equals 1 – 
Specificity. 

Specificity measures 
how often a classifier 
correctly categorizes 
a negative result. 

Specificity focuses on one 
class only, and the majority 
class biases it. 

Precision Precision also referred to as 
Positive Predicted Value, is 
calculated as 1 – False 
Detection Rate (F). 
The false detection rate is 
the ratio between false 
positives and the sum of 
true positives and false 
positives.  

Precision measures 
the fraction of correct 
classifications. 

Precision should not be used 
when the positive class is 
larger (imbalanced dataset), 
and correct detection of 
positive samples is less 
critical to the problem. 

ROC The ROC curve is a 
Sensitivity plot vs. the False 
Positive Rate. The area 
under the ROC curve 
measures how well a 
parameter can distinguish 
between a true positive and 
a true negative.  

ROC curve provides 
a measure of the 
classifier 
performance across 
different significance 
levels. 

ROC is not recommended 
when the negative class is 
smaller but more important. 
The Precision and Recall will 
primarily reflect the ability to 
predict the positive class if it 
is larger in an imbalanced 
dataset. 

F-Measure F-Measure is the harmonic 
mean of Precision and 
Recall. It is useful because 
as the Precision increases, 
Recall decreases, and vice 
versa. 

F-measure can 
handle imbalanced 
data. F-measure (like 
ROC and kappa) 
measures the 
classifier 
performance across 
different significance 
levels. 

F-measure does not 
generally take into account 
true negatives. 
True negatives can change 
without affecting the F-
measure. 

Pearson 
correlation 
coefficient 

Pearson’s correlation 
coefficient (r) quantifies the 
degree of a ratio between 
the true and predicted 
values by a value ranking 
from −1 to +1. 

Pearson’s correlation 
is a valid way to 
measure the 
performance of a 
regression algorithm. 

Pearson’s correlation 
ignores any bias between 
the true and the predicted 
values. 
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Information 
transfer rate 

(ITR) 

As BCI is a channel from 
the brain to a device, it is 
possible to estimate the bits 
transmitted from the brain. 
ITR is a standard metric for 
measuring the information 
sent within a given time in 
bits per second.  

ITR is a metric that 
contributes to the 
criteria to evaluate a 
BCI System. 

ITR is often misreported due 
to inadequate understanding 
of many considerations as 
delays are necessary to 
process data, present 
feedback, and clear the 
screen. 
TR is best suited for 
synchronous BCIs over user-
paced BCI. 
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3.  LITERATURE REVIEW  

The present work started with developing a survey that followed the guidelines of 

Kitchenham presented in [125]. This guide suggests three phases with their respective 

activities. Therefore, we considered planning, conducting, and reporting phases in our literature 

research.  

In the planning phase, the research questions and search chains are defined. In the 

conducting the review phase, we established the search strategy. We used 

Semanticscholar.org to find sources because it links to journals and conference proceedings' 

major databases and set the search to journals and conferences with a date range from 2015 

to 2022. In this phase, we also conduct the searches, obtain initial results and apply inclusion 

and exclusion criteria to them. Additionally, we used quality assessment filters. The final papers 

were used to extract information in tables for the reporting phase.  

Based on the goals of our research. We define the following literature review’s objectives:  

Obj1: Which computational systems with their respective performance results for emotion 

recognition EEG-based BCI devices are in the literature between the date range? 

Obj2: Which emotion elicitation methods are used in computational systems for emotion 

recognition applying EEG-based BCI devices can be found in the literature in the specified date 

range? 

Obj3: How many electrodes use the EEG-based BCI devices in computational systems for 

emotion recognition? 

Obj4: Are any poker games used as emotion elicitation methods in computational systems 

for emotion recognition using EEG-based BCI devices? 

Obj5: Are any stock market activities used as emotion elicitation methods in computational 

systems for emotion recognition using EEG-based BCI devices? 

The analyzed papers’ were found using the following search chains with the respective 

result number for journal and conference papers in the date range:  

SCh1: Computational systems emotion recognition EEG-based BCI devices. This search 

got 113 papers.  
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SCh2: Emotion elicitation methods emotion recognition EEG-based BCI devices. This 

search obtained 67 papers. 

SCh3: Computational systems algorithms emotion recognition EEG-based BCI devices 

number of electrodes. This search produced four papers.  

SCh4: Poker games emotion elicitation emotion recognition EEG-based BCI. This chain 

generated seven papers 

SCh5: Stock market activities emotion elicitation emotion recognition EEG-based BCI. This 

search obtained two papers.  

 The obtained studies also allowed a comparison of results while considering the classified 

number of emotions. 

Adding the results of each search, we obtained 193 papers. Each article was read to have 

complete information to guide the application of inclusion and exclusion filters. The inclusion 

criteria were: (1) The articles were published in the considered period from 2015 through 2022 

in peer-reviewed journals and conferences, (2) they constitute emotion recognition systems 

that used EEG-based BCI devices with a focus on computational intelligence applications, and 

(3) they include experimental setups and performance evaluations. We applied exclusion 

criteria in this literature review stage and eliminated redundant papers. 

With these considerations, 36 journal studies and 24 conference papers were selected. 

Finally, from these 60 papers, we applied additional quality assessments using the Kitchenham 

methodology. With these quality criteria, we eliminated articles that did not have detailed results 

and documents that were medical studies for diagnosis or evaluation because they have a 

different perspective than ours.  We obtained a sample of 35 articles at the end of these filters 

to show a summary of technical details, components, and algorithms, as presented in Table 8. 

As illustrated in Tables 3, 4, 5, 6, 8, and 9, we extracted this group's statistical data about 

computational techniques to detect trends and perform a comparative analysis. 

Applying the Kitchenham methodology to select these 35 articles, we evaluated the papers 

using quality assessments that include an evaluation of different criteria as the use of datasets 

with varying forms of emotion elicitation, types and number of feature extraction and selection 

methods, number of classification algorithms used, number and variety of classified emotions 
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(valence-arousal space or discrete emotions), and level of accuracy results. With this scope, 

Table 8 summarizes the research in this field from 2015 to 2022. 

The following components characterize the systems presented in Table 8: (1) Stimulus type; 

(2) databases generated by the paper’s authors or publicly available; (3) the number of 

participants; (4) extraction and selection of characteristics; (5) features; (6) classification 

algorithms; (7) number and types of classes; and (8) performance evaluation.  

The applied preprocessing methods are mostly similar in the reviewed studies. Their 

primary preprocessing methods are standard, i.e., artifacts removal outside the EEG frequency 

bands and a notch filter for 50 or 60 Hz to eliminate electrical noise. For the above,  this 

information was omitted in Table 8. 

3.1. Emotion Elicitation Methods 

This section analyzes research papers that used different resources to provoke emotions 

in their subjects. These stimuli are music videos, film clips, music tracks, self-induced disgust 

(produced by remembering an unpleasant odor), and risky situations in a flight simulator as 

examples of active elicitation of emotions. EEG-based BCI systems frequently use public DEAP 

and SEED databases that apply music videos and film clips as stimuli, respectively. Different 

stimuli provoke emotions that affect different brain areas and produce EEG signals that can be 

recognized concerning specific emotions. Figure 5 shows the frequency in which different 

emotion elicitation methods are applied to generate datasets used in the reviewed systems. 

Few research papers resort to more elaborate platforms to provoke “real life” emotions. 

However, such methods have been applied to other physiological responses (other than EEG 

like skin conductance, respiration, electrocardiogram (ECG), and facial expressions, among 

others) [126]. Some authors state that stimuli that provoke wide-ranging emotions could make 

exploring the brain’s mechanisms activated for specific emotion generation challenging. In this 

sense, focusing on a particular emotion could improve our understanding of such mechanisms. 

For our research sample, we highlighted research pieces that study emotions, such as dislike 

and disgust, separately [38],[127]. 
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Figure 5. Emotion elicitation methods. 

 

3.2. Number of Participants to Generate Datasets 

Figure 6 presents the number of participants in the experiments to obtain EEG datasets to 

train and test the emotion recognition systems. Most of the systems used a number of subjects 

ranging from 31–40 (53%) and 11–20 (32%). For more than 40 participants, there are no 

datasets. The targeted studies used EEG data from healthy individuals. 

 

Figure 6. Number of participants in EEG datasets. 
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Table 8. Emotion recognition systems using BCI 1 

Reference/Year Stimuli  EEG Data 
Feature 

Extraction 
Feature 

Selection 
Features Classification Emotions Accuracy 

[128]/2016 - DEAP 

Computation 
in the time 
domain, 
Hjorth, 

Higuchi,  
FFT 

mRMR 
Statistical 

features, BP, 
Hjorth, FD 

RBF NN 
SVM 

3 
class/Arousal 

3 
class/Valence  

Arousal/60.7% 
Valence/62.33%  

[78]/2015 
15 movie 

clips  

Own 
dataset/15 
participants 

DBN - 

DE, DASM, 
RASM, DCAU, 

from 
Delta, Theta, 
Alpha, Beta, 
and Gamma. 

kNN 
LR 

SVM 
DBNs 

Positive 
Neutral 

Negative. 

SVM/83.99% 
DBN/86.08% 

[38]/2015 
Self-

induced 
emotions 

Own 
dataset/10 
participants 

WT PCA 
Eigenvalues 

vector 
SVM Disgust Avg. 90.2% 

[129]/2018 
Video 
clips  

Own 
dataset/10 
participants 

Higuchi - FD 
RBF  
SVM 

Happy 
Calm 
Angry 

Avg. 60% 

[130]/2017 
Video 
clips  

Own 
dataset/30 
participants 

STFT, ERD, 
ERS 

LDA PSD LIBSVM 

Joy 
Amusement 
Tenderness 

Anger 
Disgust 

Fear 
Sadness 
Neutrality 

Neutrality 81.26% 
3 Positive emotions 

86.43% 
4 Negative emotions 

65.09% 

[127]/2020 - DEAP DFT, DWT - 

PSD, 
Logarithmic 

compression of 
Power Bands, 
LFCC, PSD, 

DW 

NB 
CART 
kNN 

RBF SVM 
SMO 

Dislike 

Avg. 
SMO/81.1% 
NB/63.55% 
kNN/86.73% 
CAR/74.08% 
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Reference/Year Stimuli  EEG Data 
Feature 

Extraction 
Feature 

Selection 
Features Classification Emotions Accuracy 

[79]/2019 - 
DEAP and 
SEED-IV 

Statistics in 
the time 

domain, FFT, 
DWT 

- 
PSD, Energy,  
DE, Statistical 

features 
SVM 

HAHV 
HALV 
LALV 
LAHV 

Avg DEAP/79% 
Avg.SEED/76.5% 

[13]/2016 
Music 
tracks 

Own 
dataset/30 
participants 

STFT, WT - 

PSD, BP 
Entropy, 
Energy, 

Statistical 
features, 
Wavelets 

SVM 
MLP 
kNN 

Happy 
Sad  
Love  
Anger 

Avg. 
SVM/75.62% 
MLP/78.11% 
kNN/72.81% 

 

[84]/2017 - SEED 
FFT and 
electrode 
location 

Max Pooling 
DE, DASM, 

RASM, DCAU 

SVM 
ELM 

Own NN 
method 

Positive 
Negative 
Neutral 

Avg. 
SVM/74.59% 
ELM/74.37% 

Own NN/86.71% 

[48]/2019 
Video 
clips 

Own 
dataset/16 
participants 

STFT, WT, 
Hjorth, AR 

- 

PSD, BP, 
Quadratic 
mean, AR 

Parameters, 
Hjorth 

SVM 

Happy  
Sad 
Fear 

Relaxed 

Avg. 90.41% 

[131]/2019 - DEAP WT - Wavelets LSTM RNN 
Valence 
Arousal 

Avg. 59.03% 

[132]/2018 - SEED 
Embedded 

LSTM 
- DE BiDANN 

Positive 
Negative  
Neutral 

Avg. 92.38% 

[113]/2019 - DEAP 

Statistics  
in the time 

domain and 
FFT 

 
Statistical 

characteristics. 
PSD 

BT 
SVM 
LDA 

BLDA 
CNN 

Valence 
Arousal 

Avg. for combination 
features AUC 

BT/0.9254 
BLDA/0.8093 
SVM/0.7460 
LDA/0.5147 

CVCNN/0.9997 
GSCNN/1 
GSCNN/1 
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Reference/Year Stimuli  EEG Data 
Feature 

Extraction 
Feature 

Selection 
Features Classification Emotions Accuracy 

[120]/2017 - DEAP 

Statistics in 
the time 

domain and 
FFT 

GA 

Statistical 
characteristics, 

PSD, 
and nonlinear 

dynamic 
characteristics 

AdaBoost 
Joy 

Sadness 
95.84% 

[133]/2019 - DEAP STFT, NMI - 

Inter-channel 
connection 

matrix based on 
NMI 

SVM 

HAHV 
HALV 
LALV 
LAHV 

Arousal/73.64% 
Valence/74.41% 

[73]/2018 - SEED FFT SDA 
Delta, Theta, 
Alpha, Beta, 
and, Gamma 

LDA 
Positive 
Negative  
Neutral 

Avg. 93.21% 

[114]/2019 - SEED FFT - 

Electrodes-
frequency 

Distribution 
Maps (EFDMs) 

CNN 
Positive 
Negative 
Neutral 

Avg. 82.16% 

[85]/2019 - 

SEED/ 
DEAP/ 

MAHNOB-
HCI 

Statistics in 
the time 

domain and 
FFT 

Fisher-
score, 

classifier-
dependent 
structure 

(wrapper), 
mRMR, 
SFEW 

EEG-based 
network 

patterns (ENP) 
PSD, DE, ASM, 
DASM, RASM, 
DACU, ENP, 

PSD + ENP, DE 
+ ENP 

SVM 
GELM 

Positive 
Negative  
Neutral 

Best feature F1 
SEED/DE+ENP 

gamma 0.88 
DEAP/PSD+ENP 

gamma 0.62 
MAHNOB/PSD+ENP  

Gamma 0.68 
 

[96]/2019 - DEAP Embedded 
Sparse 

group lasso 

Granger 
causality 
feature 

CapsNet 
Neural 

Network 

Valence-
arousal 

Arousal/87.37% 
Valence/88.09% 

[31]/2019 
Video 
clips  

Own 
dataset 

RCLS/14 
participants. 

SEED 

Statistics 
 in the time 
domain, WT 

- 

HOC, FD, 
Statistics, 

Hjorth, 
Wavelets 

GRSLR 
Happy 

Sad 
Neutral 

81.13% 
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Reference/Year Stimuli  EEG Data 
Feature 

Extraction 
Feature 

Selection 
Features Classification Emotions Accuracy 

[134]/2019 - DEAP 

Statistics 
 in the time 

domain, FFT, 
WT 

Correlation 
matrix, 

information 
gain, and 
sequential 

feature 
elimination 

Statistical 
measures, 

Hjorth, 
Autoregressive 

parameters, 
frequency 

bands, the ratio 
between 

frequency 
bands, wavelet 
domain features 

XGBoost 

Valence, 
arousal, 

dominance, 
and liking 

Valence/75.97% 
Arousal/74.20% 

Dominance/75.23% 
Liking 76.42% 

[135]/2015 - DEAP 
Frequency 

phase 
information 

Sequential 
feature 

elimination 

Derived 
features of 
bispectrum  

SVM 

Low/high 
valence, 
low/high 
arousal 

Low-high 
arousal/64.84%  

Low-high 
valence/61.17% 

[136]/2016 - DEAP Higuchi, FFT - FD, PSD SVM 
Valence, 
arousal 

Valence/86.91% 
Arousal/87.70% 

[137]/2017 - DEAP DWT - 
Discrete 
wavelets 

kNN 
Valence, 
arousal 

Valence/84.05% 
Arousal/86.75% 

[138]/2015 - DEAP 
RBM - 

embedded 
- 

Raw signal-6 
channels 

Deep-
Learning 

Happy, calm, 
sad, scared 

Avg. 75% 

[139]/2017 - DEAP DWT 

Best 
classification 
performance 
for channel 
selection 

Discrete 
wavelets 

MLP 
kNN 

Positive, 
negative 

MLP/77.14% 
kNN/72.92% 

[140]/2017 - DEAP 
Embedded 

LSTM 
- - LSTM NN 

Low/high 
valence,  
Low/high 
arousal, 
Low/high 

liking 

Low-high 
valence/85.45% 

Low-high 
arousal/85.65% 

Low-high 
liking/87.99% 

[141]/2018 - DEAP 
Embedded 

CNN 
- - 3D-CNN 

Valence, 
arousal 

Valence/87.44% 
Arousal/88.49% 
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Reference/Year Stimuli  EEG Data 
Feature 

Extraction 
Feature 

Selection 
Features Classification Emotions Accuracy 

[142]/2018 - DEAP 

FFT, phase 
computations, 

Pearson 
correlation 

- 

PSD, phase, 
phase 

synchronization, 
Pearson 

correlation 

CNN Valence 
Low-high 

valence/96.41% 

[37]/2019 
Flight 

simulator 

Own 
dataset/8 

participants 

Statistics 
 in time 

domain, and 
WT 

- 
Statistical 
measures,  

DE, Wavelets 

ANN 
 

Happy, Sad,  
Angry, 

Surprise, 
Scared 

Avg. 53.18% 
 

[143]/2021 - 
SEED 
DEAP 

CCWT 
DE, Mutual 
Information 

Matrix 

Time and 
frequency 
behavior 

SVM 
 

SEED: 
positive, 
negative, 
neutral 

DEAP: 4  
classes 
HAHV 
HALV 
LALV 
LAHV 

SEED: 96.3% 
DEAP: 81.1% 

 

[144]/2021 
Text 

(Twitter 
data) 

Own 
dataset/2 

participants 
STFT - 

Frequency 
bands 

RF 
Decision Tree 

SVM 

Happiness 
Sadness 

Fear 
Anger 

RF: 98% 
Decision Tree: 88% 

SVM: 32% 

[145]/2021 - 
DEAP  

DREAMER 
Deep Forest - 

Embedded 
- 

Spatial and 
temporal 

Deep Forest 

DEAP: 
Low/high 
Valence, 
Low/high 
Arousal 

DREAMER: 
Low/high 
Valence, 
Low/high 
Arousal, 
Low/high 

Dominance 

DEAP 
Low-high  

valence/97.59%, 
Low-high 

arousal/97.53% 
 

DREAMER 
Low-high 

valence/89.03% 
Low-high arousal/: 

90.41% 
Low-high 

dominance/ 89.89% 
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Reference/Year Stimuli  EEG Data 
Feature 

Extraction 
Feature 

Selection 
Features Classification Emotions Accuracy 

[146]/2022 - 

DEAP 
DREAMER 
AMIGOS  

SEED 

Embedded 
CNN 

ReliefF 

Embedded 
features in 10 

different 
channels for 
each dataset 

SVM 

Low/high 
Valence,  
Low/high 
Arousal,  
Low/high 

Dominance. 

DEAP 
Low-high valence/ 

83.26% 
Low-high arousal/ 

83.85% 
Low-high 

dominance/ 88.58% 
 

DREAMER 
Low-high valence/ 

90.76% 
Low-high arousal/ 

92.92% 
Low-high 

dominance/ 92.97% 
 

AMIGOS 
Low-high valence/ 

88.54% 
Low-high arousal/ 

91.51% 
Low-high 

dominance/ 90.34% 
 

SEED 
Low-high valence/ 

88.19% 
 

[147]/2022 - DEAP 
Embedded 
FBCCNN 

- 
Frequency band 

correlation 
features 

FBCCNN 
Valence - 
Arousal 

70.34% 

1 Autoregressive Parameter (AR). Bagging Tree (BT). Band Power (BP). Bayesian linear discriminant analysis (BLDA). Bi-hemispheres Domain 

Adversarial Neural Network (BiDANN). Convolutional Neural Network (CNN). Complex Continuous Wavelet Transform (CCWT), Complex-Valued 

Convolutional Neural Network (CVCNN). Gated-Shape Convolutional Neural Network (GSCNN). Global Space Local Time Filter Convolutional 

Neural Network (GSLTFCNN). Deep Belief Networks (DBNs). Differential entropy (DE). DE feature Differential Asymmetry (DASM). DE feature 

Rational Assimetry (RASM). DE feature Differential Caudality (DCAU). Electrooculography (EOG). Electromyogram (EMG). Event-Related 
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Desynchronization (ERD) and Synchronization (ERS). Feature selection and weighting method (SFEW). Fractal dimensions (FD). Frequency Band 

Correlation Convolutional Neural Network. Genetic Algorithm (GA). Graph regularized Extreme Learning Machine (GELM) NN. Graph Regularized 

Sparse Linear Regularized (GRSLR). High Order Crossing (HOC). Linear Discriminant Analysis (LDA). Logistic Regression (LR). Long short-term 

memory Recurrent Neural Network (LSTM RNN). Minimum-Redundancy-Maximum-Relevance (mRMR). Normalized Mutual Information (NMI). 

Principal Component Analysis (PCA). Radial Basis Function (RBF). Random Forest (RF). Short-Time Fourier Transform (STFT). Stepwise Discriminant 

Analysis (SDA). Support Vector Machine (SVM). Wavelet Transform (WT),  
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3.3. Datasets 

Figure 7 presents the usage percentage of datasets used in emotion recognition. DEEP 

and SEED are publicly available databases and most frequently used (48% and 23% of 

applications, respectively). Other studies used self-generated datasets (23%), which are 

typically not freely accessible. The MAHNOB-HCI and RCLS public datasets appeared in our 

research sample for the literature review, with a participation of 3% each. 

Systems that use public databases offer some comparability, but contrast is limited even if 

the same characteristics are handled. Still, such public databases could eventually lead to 

findings if objective comparisons are performed. 

 

Figure 7. EEG datasets for emotion recognition. 

3.4. Most used Feature Extraction algorithms 

Most systems use feature extraction methods in the time, frequency, time-frequency, or 

space domains. A small percentage of works evaluate the functional connectivity (or 

differences) in the observed activity between brain regions when emotions are provoked. 

Features with non-redundant information combined from different domains yield better 

classification results. However, it is still unclear if features work better alone or in combination 

with each other or which type of features are more relevant for emotion recognition. 
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Our review found that researchers addressed these issues by developing feature extraction 

algorithms that outperform the classic frequency bands and extract as much information as 

possible from brain signals. Further developments should be connected to a comprehensive 

understanding of the brain’s neurophysiology. 

Figure 8 presents the domains of the used features. Frequency domain features are the 

most frequently used (38.6%) and appear more often as time domain (24%) or time-frequency 

domain features (19.3%). Asymmetry characteristics between electrode pairs (by each 

hemisphere) are used in 1.8% of the occasions. Additionally, raw data (without features) is 

used for deep learning classifiers (15.8%) that produce embedded or internal features. 

 

Figure 8. The domain of used features. 

In the 35 papers shown in Table 8, we calculated the percentage of use of the feature 

extraction algorithms. Figure 9 presents these percentages.  
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Figure 9. Percentage of the use of algorithms for feature extraction from Table 8. 

We observed an increasing presence of algorithms embedded in neural networks like 

Restricted Boltzmann Machine (RBM), Deep Belief Networks (DBN), Normalized Moment of 

Inertia (NMI), Capsule Network (CapsNet), Convolutional Neural Networks (CNN), Deep 

Forest, Frequency Band Correlation CNN (FBCCNN), and Long Short Term Memory (LSTM) 

(15.8%) that are used to extract signal features automatically from raw data. This approach 

yields a good enough classifier performance because it preserves information and avoids the 

risk of removing essential emotion-related signal features. 
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1.8% of the studies use spatial features with signal vs. electrode location information.  

Features in the time-frequency domain are extracted using Wavelets (WT) and Discrete 

Wavelet Transform in 19.3% of the analyzed studies.  

Features in the frequency domain are Frequency Phase with a presence of  3.5%, Event 

Related Desynchronization (ERD) with 1.8% of the occurrences, Event Related 

Synchronization (ERS) with 1.8%, Fast Fourier Transform and Discrete Fast Fourier were used 

in 22.8% of the occasions, and Short Time Fourier Transform (STFT) that appeared 8.8%.  

Features in the time domain are Pearson Correlation with 1.8%, Statistics with 12.3% of 

occurrences, Autoregression (AR) with 1.8%, Hjorth that appeared 3.5%, and Higuchi with 

5.3% of the studies.  

3.5. Most used Feature Selection Methods 

It is worth noting that 61.3% of the systems presented in Table 8 do not use a feature 

selection method. Table 9 lists the systems that utilized feature selection algorithms. 

Interestingly, virtually every system uses a different algorithm except for the methods minimum 

redundancy maximum relevance (mRMR) and recursive feature elimination, which are utilized 

for two other schemes. 

Table 9. Systems in Table 8 using feature selection algorithms. 

Feature Selection Algorithm Reference 

mRMR [80,126] 
PCA [38] 
LDA [128] 

Max Pooling [79] 
Genetic Algorithm [118] 

SDA [75] 
Fisher-score [80] 

SFEW [80] 
Sparse group lasso [96] 
Correlation matrix [132] 
Information gain [132] 

Recursive feature elimination [132,133] 
Best classification performance for channel selection [137] 

ReliefF [48] 
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3.6. Classifiers 

Figure 10 shows that most classifiers were linear (48%) and neural networks (41%); a few 

papers used nearest neighbors (7%) and ensemble methods (5%). Consequently, it is worth 

mentioning that the following algorithms have become increasingly popular for EEG-based 

emotion recognition applications: 

• Linear classifiers, such as naïve Bayes (NB), logistic regression (LR), support vector 

machine (SVM), and linear discriminant analysis (LDA) (48% of use). 

• Neural networks like multi-layer perceptron (MLP), radial basis function RBF, convolutional 

neural network (CNN), deep belief networks (DBN), extreme learning method (ELM), graph 

regularized extreme learning machine (GELM), long short term memory (LSTM), domain 

adversarial neural network (DANN), CapsNet, and graph regularized sparse linear 

regularized (GRSLR) (41% of use). 

• Ensemble classifiers like random forest, CART, bagging tree, Adaboost, and XGBoost are 

less used (5%). The same situation occurs with the kNN algorithm despite its consistently 

good performance results, probably because it works better with a simpler feature vector 

(7%). 

This review did not find studies that applied non-linear Bayesian classifiers as hidden 

Markov models (HMM) during our considered period. 

 

Figure 10. Classifiers’ usage 
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3.7. Performance vs. the Number of Classes-Emotions 

The performance of almost all systems was evaluated using accuracy, except for two systems 

that used the area under the curve (AUC), and the other presented an F1 measure. 

Unfortunately, EEG datasets are usually unbalanced, with one or two labeled emotions more 

numerous than the others, which is somewhat problematic for this approach. Thus, this 

situation could lead to biased classifications. Moreover, EEG datasets are typically unbalanced, 

and performance measures should be calculated to contextualize their outcomes. Unbalanced 

datasets are those in which one or some classes are significantly more numerous than the 

others. This situation causes a classification bias for the more frequent categories. In this 

scenario, the minority classes fail to be recognized, but the classifier's performance seems high 

despite this. Treatment to prevent this problem varies greatly from study to study because they 

could use different criteria. In our view, this is one of the reasons for such results are not entirely 

comparable among the various studies. In our opinion, this is why such results are not entirely 

comparable among different studies. 

Figure 11 presents the relationship between systems and the number of classified 

emotions. Most systems use the VA or VAD spaces and classify each dimension as a bi-class 

(for instance, valence positive and negative; arousal high-value and low value) or tri-class 

problem (valence positive, neutral, and negative; arousal and dominance high-value and low-

value). 

 
Figure 11. Percentage of systems with different numbers of classified emotions. 
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The two most used classification criteria are arousal and valence, categorized separately,  

with 35.0% of occurrences. On the other hand, 15.0% categorized valence with three classes: 

Positive, neutral, and negative. Then, 7.5% classified three discrete emotions: sadness, love, 

and anger. Moreover, 5.0% ranked valence as two classes (positive and negative), four discrete 

emotions (happy, sad, fear, and relaxed) were used by 7.5% of studies, and one discrete 

emotion (disgust in one system and dislike in other) had 5% of occurrences. Feelings located 

in one of four quadrants of the VA space (high valence-high arousal, high valence–low arousal, 

low valence–high arousal, and low valence–low arousal) had 10% of use. 

Classifier performance should be evaluated, considering that accuracy would be inversely 

proportional to the number of detected emotions. In other words, classification accuracy should 

be higher than a random classification process with an equal chance for each class. As the 

number of classification classes increases, a random classification process would yield a lower 

accuracy. Consequently, a classification between two classes must be greater than 50% to be 

better than a random result; in the same way, a classification between three categories must 

be greater than 33% to be considered better than a slipshod result, and so on. Therefore, such 

accuracy metrics should provide the classification performance benchmark for our evaluations. 

Although the systems' performance results depend on many factors, it is possible to find 

some relationship between the number of classes, the type of emotions classified, and the 

accuracy obtained (Figure 12). The best results are obtained with two classes, either discrete 

emotions or positive or negative values in a dimensional space. The second-best value 

recognizes one negative discrete emotion like dislike or disgust. The result that the 

classification of one emotion does not obtain the best performance value could be explained 

by the fact that in our review, we observed that negative emotions are more challenging to 

classify and tend to yield smaller performance values. 
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Figure 12. Accuracy vs. types and number of classified emotions. 

It is crucial to notice that the average accuracy for our type of results for four quadrants in 

the VA space is 76.68%.  

Comparing approaches and results obtained through different BCI-based systems is 

complex. Each system uses diverse experimental methods for emotion elicitation, protocols to 

detect EEG signals, datasets, extraction and selection of features, and classification 

algorithms; generally speaking, each implementation has different settings. Ideally, systems 

should be tested under similar conditions, but that scenario is not yet available. However, we 

have performed a comparative analysis to extract trends, bearing in mind such limitations.  

3.8 Remarks 

EEG signals are reliable information that cannot be simulated or faked. Decoding EEG and 

relating these signals to specific emotions is a complex problem. Affective states do not have 

a simple mapping with particular brain structures because different emotions activate the same 

brain locations, or conversely, a single emotion can activate several structures. 

In recent years, EEG-based BCI emotion recognition has been a computing field that has 

generated much interest. Significant advances in developing low-cost BCI devices with 

increasingly better usability have encouraged numerous research studies. 
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In this section, we reviewed the different algorithms and processes that can be part of EEG-

based BCI emotion recognition systems: (1) Emotion elicitation, (2) signal acquisition, (3) 

feature extraction and selection, (4) classification techniques, and (5) performance evaluation. 

For our survey on this topic, we mined different databases. We selected 35 studies from a 

computer science perspective to gain insight into the state of the art and suggest future 

research efforts. 

This literature review responds to the questions raised in the Introduction chapter of the 

present document regarding the EEG emotion recognition datasets available, the emotion 

elicitation methods, and the number of channels they use. Also, the most used feature 

extraction and selection algorithms, classification approaches, and their respective values for 

performance evaluation of the different systems that are presented in the literature in the 

established date range search.  

This study shows that computational methods still do not have standards for various 

applications. Researchers are continuing to look for new solutions in an ongoing effort. The 

relationship between brain signals and emotions is a complex problem, and novel methods and 

new implementations for emotion recognition are continuously presented. We expect that many 

existing challenges will soon be solved and pave the way for a vast area of possible applications 

using EEG-based emotion recognition. 

The hypothesis established in the Introduction section (page 15) was generated from the 

niches recognized in this literature review.  
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4. DATA ACQUISITION FOR EMOTION RECOGNITION 

As was mentioned in Chapter 3, in emotion recognition, datasets are generated with several 

emotion elicitation methods. For instance, the participants watch music video clips, and pieces 

of films, listen to sounds or music, view images, dyadic interactions, video games, flight 

simulators, virtual reality immersion, and execute memory recall to auto-induced emotion. 

Such approaches have different characteristics and merits. The most frequently utilized 

among the previously listed are the passive methods, i.e., those that involve films, music, and 

images. However, only a few studies used interactive stimuli such as games or a flight simulator 

to induce emotions [148][149]. To the best of our knowledge, currently, none of the procedures 

for emotion elicitation are applied in an environment resembling everyday work activities in a 

competitive environment such as trading in the stock market. Also, the recognition of emotions 

of individuals playing poker has not been studied using EEG-based BCI devices, either.  

In this context, two datasets were generated using BCI devices to sensor EEG signals while 

the experiment’s participants were engaged in emotion-provoking activities. The first dataset is 

related to emotions induced by trading in the stock market; the second one has information 

recollected from poker players. Our research proposes methods of emotion elicitation that 

proved helpful in provoking emotions.  

In our searches, for the date range from 2015 to 2022, two results appear when in 

semanticscholar.com, we enter the chain: "Stock market activities emotion elicitation emotion 

recognition EEG-based BCI.” The first one corresponds to an experiment that studies the EEG 

signals of just one investor influenced by their emotions and behaviors while making an 

investment decision [150]; the second one is unrelated to stock market activities as a source 

of emotion elicitation. Therefore, according to our systematic literature review, the proposed 

method using people carrying out stock trading has not been explored enough to provoke 

emotions interactively, that is, with the active participation of individuals in the experiments. 

Likewise, when we enter the string: "Poker games emotion elicitation emotion recognition 

EEG-based BCI," seven results appear, the first is our Review [151], the third article is a review 

that cites us [152], and the other five results have to do with multimodal elicitation of emotions 

using other different methods. 

Therefore, according to our systematic literature review, these two methods: participation 

in poker games and stock trading, have not been extensively used in other works. We chose 
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these methods precisely because they are not previously investigated and allow for active 

participation of the subjects in the experiments versus studies that use a passive stimulus to 

elicit emotions. One of the contributions of our work is to research whether emotions can first 

be induced using active elicitation methods so they can later be recognized through models 

obtained from EEG signals.  

For the data acquisition, we will use two different BCI devices with 8 and 14 channels to 

see the influence of diverse channel numbers in the results. To compare the classification 

applied in the two generated datasets, we will use the same number of registers for 

categorization, i.e., the corresponding 12 participants and 20 minutes of experimentation 

(Stock-Emotion) and 6 participants and 40 minutes for game playing (Poker). The data 

acquisition protocols for the two dataset acquisition have the same scheme because they 

consisted of the EEG data collection in two periods. First, a baseline with the participants 

relaxed, and second for the participants doing stock trading or poker activities, with one minute 

for auto-labeling emotions. 

4.1 Dataset generated from stock market participants 

This section describes the generation of a dataset with a group of people executing paper 

trading in the stock market. Paper trading is virtually simulated trading (i.e., no real money is at 

stake) that uses live stock market data to record paper trades (i.e., real transactions). Thus, 

paper trading is virtually the same as real stock market trading, but without actual money at 

risk. Paper trading is useful for our area of interest because it triggers emotions (like actual 

stock market trading). Naturally, financial decisions have consequences for individuals and 

society in general.   

Stock market trading consistently induces feelings in participants due to its money 

component. Simulated trading is as emotionally charged as real trading because money has a 

strong emotional connotation for most humans [153]. Money represents variables such as 

resources, lifestyle, survival odds, value, status, health, and even the likelihood of leaving 

offspring, to name a few [154]. Thus, participants have strong emotions tied to money, making 

real and even simulated trading a powerful emotional stimulus. In particular, paper trading is 

also emotionally charged because it evidences the participant’s ability (or lack thereof) to be 

profitable with real money [153].  
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Research suggests that emotions play a role in stock market trading because they influence 

decisions. Traders often cannot ignore such emotions, which sometimes distracts them from 

their work process when real or even simulated money is at risk [153].  

Emotional states also manifest through changes in confidence and risk tolerance [155]. If 

the trader has a constructive mindset, performance will likely increase. Likewise, if emotions 

are too intense, trading performance can worsen because stock market trading requires 

continuous decision-making while objectively analyzing potential risks and rewards. 

Emotions allow humans to respond to stimuli quickly and without rational thought. 

Evolutionarily, this offers a cheap way to react to preprogrammed scenarios, such as fight or 

flight emotions. Likewise, emotions can generate biases that influence decision-making, often 

unbeknownst to humans [156]. Likely, the brain’s parts that create emotions evolved first and 

directly connected with the body, unlike the prefrontal cortex with several separated neuronal 

layers [157]. Thus, emotions are often harder to curtail through rational thought, but they can 

be managed through recognition.  

Traders often report making decisions because they feel right at first but regret them shortly 

after. Excellent examples of emotional choices like these are “panic selling” or “fear of missing 

out” [158]. These emotions cause traders to sell at market bottoms or buy market tops. These 

trading decisions occur due to emotions, expressed as the psychological pain avoidance of 

losing money. However, such decisions are often inadequate after logical scrutiny. For 

example, buying oversold and undervalued assets probably has a positive long-term 

expectancy. However, doing so is typically emotionally difficult for traders due to the previously 

explained dynamics. 

Therefore, traders need to recognize how their emotions affect their trading process. This 

way, traders could use emotions to their advantage and not take over their systematic methods 

in their trading strategy. Thus, our approach aims to understand how traders can get the best 

of both worlds in trading through emotions and rational thought.  

We see a similar dynamic in other peak performance activities, such as playing chess or 

poker [159]. For instance, chess grandmasters are reportedly capable of observing a chess 

position and instantly “feeling” who is winning or losing, without much need for calculating 

further moves. This example shows the need for intuition (emotion or feeling) through 
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experience, combined with a disciplined, rational process (i.e., calculating chess or poker 

moves).  

In particular, stock market trading triggers three key emotions: 1) fear, 2) hope, and 3) regret 

[160]. These emotions directly affect the participant’s trading, and these effects are detectable 

through EEG readings [161].  

Applying the present research results may improve trading performance and profits 

because they are likely linked to emotional management and peak performance techniques. 

Finally, we believe that enhancing trading performance supports a more efficient market, which 

is generally understood to be positive for society. The present research results can also be 

applied in other competitive workplace scenarios.  

The above explained the reasons why we aimed to capture critical emotions related to 

trading activities, such as fear, sorrow, hope, and a calm (relaxed state) [158]. 

 

4.1.1 Data acquisition for Stock – Emotion  

We used a brain-computer interface (BCI) Ultracortex Mark IV EEG headset to record the 

experiment’s participants’ EEG signal. The device had 8-channel dry electrodes for recording 

brain signals. It uses the Cyton Bio-sensing board with an 8-channel neural interface and a 32-

bit processor to collect the EEG signal. The board communicates wirelessly with a computer 

using a USB dongle (Figures 13.a and 13.b). The Cyton Bluetooth headband device allows for 

an open-source brain-computer interface that facilitates EEG data procurement and analysis.  

We applied the 10-20 electrode placement diagram with channels 1-8 of the OpenBCI 

default setting [162]. Figure 13.c and Table 10 show the systems’ electrode location, and the 

channel’s positions are presented inside a circle. Therefore, the Stock-Emotion dataset has 

EEG recordings using eight electrodes, 4 in each cerebral hemisphere. Table 10 shows Cyton’s 

channels and eight electrode position 

The dataset corresponds to EEG signals of 12 healthy participants between the ages of 20 

to 50 years old, male and female (figure 14). Based on the trends found in the literature, it was 

decided to perform this experiment using 12 participants. In the databases that can be 

accessed publicly, there is a range from 5 to 32 participants, as seen in Table 2. Also, Figure 

6 shows that 31% of the studies analyzed in the systematic review use datasets obtained with 
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11 to 20 participants. Moreover, one of the most used and useful open datasets is SEED, which 

was generated using 12 participants. Additionally, in the analysis of the results presented later 

in this document at the end of section 5.3, it is shown that the results obtained with 12 

participants are statistically consistent.  

The EEG brain waves of the subjects were recorded while they traded in the United States 

stock markets. The experiment used paper trading, i.e., live market data and simulated money, 

as presented in Figure 15. The investigation required that each of the 12 participants have a 

session of paper trading. Participants self-reported their state of mind in one-minute intervals.  

The protocol followed for the recordings started with a two-minute reference point, where 

the participants were asked to relax. This initial recording was labeled as a calm state. After 

this, the subjects initiated the trading process. 

 

 

 

(a) 

 

(b) 

 

 (c) 

Figure 13. (a) OpenBCI Ultracortex headset, (b) Cyton Biosensing board, (c) Electrode 

location. 

Table 10. Cyton’s channels and eight electrode’s position 

Electrode’s 
position Channel 

1 FP1 
2 FP2 
3 C3 
4 C4 
5 P7 
6 P8 
7 O1 
8 O2 
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Figure 14. A participant with the Open-BCI headset. 

 

Figure 15. Open-BCI EEG signals. 

Figure 15 is composed of three sections. The data for each electrode is a time series 

presented on the left side. On the upper right side is data of each electrode's frequency plot. 

On the lower right side are shown accelerometer data that sense the head's orientation (or 

change in direction); in the figure, it is shown that the position of the participant’s head was 

stable. Additionally, photo capture of the participant is presented in the right lower corner. 

The participants were previously trained in a standardized trading methodology that used 

RSI, MACD, Keltner channel indicators, and momentum and mean reversal trading techniques. 
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Our goal was to give participants the same theoretical trading framework and analyze their 

EEG readings as they dived into the markets. We set up a carrot and stick reward dynamic for 

participants. As measured by their profits, the top-performing individuals were promised to 

receive a payout from the bottom participants. Here, we aimed to enhance the risk and reward 

dynamics inherent to stock trading and influence the participant’s emotional states. 

Participants tagged the data with a self-reported state of mind. The data was labeled using 

self-assessment manikin [11], presented in figure 16, to define valence – arousal in the VA 

space. We used the quadrants derived from the variables 1) valence and 2) arousal according 

to Russell’s circumplex model [10].  

This self-labeling method is used to generate datasets, such as DEAP and SEED. In our 

experiments, we have an interruption every minute to allow self-labeling using the manikin. 

In this thesis, since the emotion elicitation methods are active processes in which the 

participant must remain focused, self-labeling can cause a loss of concentration in the activity. 

But this does not affect the experiment since our objective is not to achieve efficiency in the 

participant's activity; our purpose is to capture EEG signals and relate them to the recognition 

of emotions. 

 

Figure 16. Self-assessment manikin for valence and arousal 

As already mentioned, stock market activities trigger three key emotions: fear, hope, and 

regret [149]. Then we translate the EEG readings to emotional states related to these emotions. 

As figure 16 depicts, emotional valence describes if the emotion is positive or negative, lower 

values refer to a negative valence and higher values to a positive one; emotional arousal refers 
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to the intensity of the feeling. Fear is an emotion of negative valence and high arousal LVHA; 

hope is a feeling of high valence and high arousal HVHA, and regret is an emotion that 

produces a negative valence and low arousal LVLA [10].  Figure 17 shows the Valence-Arousal 

plane and the three related key emotions of stock trading (fear, hope, and regret). In this figure, 

it is also located a relaxed state with positive valence and low arousal. A calmed condition is 

possibly the ideal affective state for a trader to make objective decisions.  

One of our work’s contributions is the delivery of the dataset called Stock-Emotion. It 

introduces an interactive emotion elicitation method that resembles a specific work scenario 

and constitutes an emotionally relevant stimulus. This method efficiently motivates affective 

states that a machine learning system could recognize. Also, the Stock-Emotion database 

could be used for general emotion recognition purposes. 

As already stated, the experiments’ design with 12 participants is justified by referencing 

similar studies analyzed in related work reviews where at least 30.1% of researchers execute 

experiments between 11 to 20 individuals. Regarding the duration of the sessions and the size 

of our dataset, it can be observed that the present work carries out 20-minute sessions with 

each participant, with self-labeling of emotions every one minute. This protocol is defined from 

the study of the systematic review of the literature since the most used databases, such as 

DEAP and SEED, use self-labeling every minute. On the other hand, an adult's average 

attention span focusing on a single task is about 20 minutes [163], which is why each session 

with a participant was determined to last that long. 

Our dataset did not contain HVLA entries (relaxed state) except those obtained in the two-

minute baseline. Therefore, the amateur participants never felt something resembling a calm 

state during trading. This outcome is expected for novice traders. 
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Figure 17. Russell’s Circumplex Model with three key emotions and a relaxed state. 

On the topic of the labeling frequency of segments of the dataset, it is worth noting that in 

the DEAP dataset, emotions are tagged for every one-minute long music video, with three 

seconds separating each clip. So, in this well-known dataset, one minute was considered 

enough to provoke, recognize, and tag an emotion. In our experiment, the participants labeled 

their emotions every one minute, deemed sufficient to detect their current feelings.  

Since emotions gradually change in humans and are possible higher in the last section of 

the time window, processing was made for the one-minute EEG records before a label. It was 

also executed, focusing on the final 30 seconds of EEG data from the one-minute segment. 

Classification accuracy was evaluated to see if it may lead to better performance, as Koelstra 

et al. have suggested this strategy in their work [164]. 

Figure 18 shows that the Stock-emotion database does not have High Valence - Low 

Arousal (relaxed state) labels, except for the first two-minute baseline (not included in the 

figure). This finding contrast with the DEAP dataset, which has 21% in HVLA because it has 

another emotion elicitation method (music videos). 
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Figure 18. Valence – Arousal results Stock-Emotions vs. DEAP results 

These results show that our elicitation method efficiently generates these three critical 

emotions related to stock trading in competitive markets. The following section presents an 

extension of this primary dataset to test emotion elicitation methods further using poker games. 

4.1.2 Preprocessing  

In addition to the preprocessing embedded in the Cyton Open-BCI device, artifact removal 

is carried out using two Butterworth filters with zero-phase to preserve frequencies between 1 

Hz and 80 Hz to eliminate the noise generated from eye movement and heartbeat. These two 

filters: one high-pass followed by a low-pass, causes less distortion or loss of information than 

one band-pass filter. Besides, a zero-phase filter can prevent going forward and backward over 

the signal to eliminate a phase shift. Additionally, a 60 Hz notch filter was utilized to remove 

electrical noise contamination.  

4.1.3 Data balancing 

The dataset is unbalanced with minority classes that are ignored in the classification; this 

means that the number of records for each class is unequal, with a majority in some classes 
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and fewer occurrences in others. For this reason, it is necessary to balance the number of 

samples to increase the sensitivity toward these categories. A type of data augmentation is 

used for minority classes known as Synthetic Minority Oversampling Technique or SMOTE. 

This technique was introduced by [165] that combines over-sampling the minority classes and 

under-sampling the majority classes to achieve better classifier performance. The 

implementation available in the SKLearn library is used. 

4.2 Dataset generated from poker players 

This study employs a novel emotion elicitation method to recollect EEG signals using a 

Brain-Computer Interface (BCI) commercial device with 14 channels for emotion recognition 

using machine learning algorithms. At this point in the research, we wanted to address another 

problem: the influence of the number of electrodes used in the BCI device to capture the EEG 

signals. Some studies indicate that using a smaller number of electrodes, even with a single-

channel EEG, it is possible to have enough information to perform emotion recognition [166].  

Therefore, we took advantage of the opportunity to test another sensor with 14 channels to 

see if the higher number of channels allows higher accuracy in emotion recognition compared 

to the OpenBCI with only eight electrodes. On the other hand, this new device, being of a newer 

generation than the OpenBCI, is more comfortable to use for an extended time. This last 

consideration is important because the average time an online poker tournament lasts around 

45 minutes.  

We obtained EEG signals of 6 participants playing a complete Texas hold ’em poker game 

consisting of several hands in a sit-and-go online tournament. As was said, a match has an 

average game duration of 45 minutes. The experiment with a poker game is a ludic activity that 

will more easily retain attention for a longer time than trading, and we want each participant to 

join in an entire contest to have the experience of winning or losing several games until they 

are eliminated or win. The time available for each experiment per participant would be about 

45 minutes which is more than double that of the trading experiment; therefore, to have a similar 

amount of data in volume, half the number of participants is used, i.e., six subjects. This dataset 

is also imbalanced; we used SMOTE to oversample minority classes to obtain the same 

number of registers for each class.  This information is used as input for an emotion recognition 

system that uses machine learning algorithms such as kNN, Random Forest, and neural 

networks.  
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Poker was chosen because it is a game that provokes both positive and negative emotions 

associated with the sudden changes of the hands. People capable of detecting and 

distinguishing their feelings have more possibilities to control them and make objective 

decisions to win over their opponents [167]. This type of emotion and the necessity of directing 

them to keep objective is also present in other environments that provoke intense emotions as 

working in the stock market [151]. 

4.2.1 Dataset acquisition 

The experiment corresponds to the register of real-time emotions using an EEG-based BCI 

device to record EEG readings while the participants play a complete Texas hold ’em poker 

game consisting of several hands in a sit-and-go online tournament with real money at stake. 

The experiment joined six subjects (three men and three women) playing online Texas Hold 

’em poker during a complete sit-and-go tournament with several hands.  

The experimental setup has the following procedure: as a baseline, the player is asked to 

relax with the eyes open for 15 seconds, 5 seconds of separation, and 15 more seconds for 

relaxation with the eyes closed. After a hint signal, the game starts. The instants in which the 

player reports emotions are marked with one of the valence – arousal space quadrants. Self-

assessment manikin [11] is used to evaluate valence (positive to negative feelings) and arousal 

(from calm to excited) to build a two-dimensional emotional space with four quadrants 

corresponding to positive valence and low arousal (for instance, calmness), positive valence, 

and high arousal (for illustration, happiness),  negative valence and low arousal (for example, 

sadness), and negative valence and high arousal (for instance, anger).   

 We used a brain-computer interface (BCI) EPOCx headset with EmotivPRO software to 

record the EEG signal from the studied participants. Figure 19 shows that it has 14-channel 

wet electrodes to record brain signals. EPOCx has 14 sensors for the channels AF3, F7, F3, 

FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4 with two references: CMS and DRL, 

according to the 10-20 systems diagram. Figure 20 presents a participant during one 

experiment with the EPOCx headset. In the upper part of Figure 21, the FFT for the F7 and 

AF4 channels is observed, and in the lower section, a comparison of values between these two 

channels for the Theta, Alpha, Low Beta, High Beta, and Gamma bands.  
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Figure 19. EPOCx headset and Electrode location. 

 

Figure 20. A participant with an EPOCx headset 
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Figure 21. FFT and band comparison between channels F7 and AF3 for one participant 

4.2.2 Preprocessing 

The generated bandwidth goes from 0.16 to 43 Hz, and the EmotivPRO software uses two 

notch filters to eliminate electrical noise at 50Hz and 60 Hz. Additional filtering is added with a 

built-in digital 5th order sync filter. Figure 19 shows the device and the position of the electrodes. 

The output of the EPOCx device has a complete filter system that produces a virtually clean 

EEG output ready for processing without additional filtering. 

We obtained data transformed in CSV format from the BCI device with EmotivPro software 

in three files, one corresponding to raw data, the second corresponding to the labels, and a 

third is a JSON file with descriptive details. 

4.2.3 Data balancing 

The dataset for poker games is also unbalanced, with different numbers of registers for 

each class.  We used SMOTE again to avoid a bias in the classification toward the majority 

classes as we did with the Stock-Emotion dataset.  
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5. EXPERIMENTATION AND RESULTS 

This chapter presents the most relevant experiments and best results obtained using the 

two datasets generated for this research and different combinations of input data, features, and 

machine learning algorithms to infer the optimal setup for emotion recognition using EEG 

signals. 

One of the main contributions of this work is the use of active methods for emotion elicitation 

to generate an EEG dataset because this field could benefit from further exploration. As far as 

we know, the proposed methods have not been used before, and they are one of the novelties 

of our research.  

On the other hand, the methodology for choosing algorithms for extraction and selection of 

features and classification of samples was defined using the information obtained in the 

literature revision, focusing on the methods less commonly employed that obtained more 

appealing results in our preliminary experiments. Then, based on these data, additional 

systematic experimentation was carried out with different approaches until the best 

performance in terms of classification accuracy was found.  

Different tests were performed using features extracted in the time and frequency domain. 

The best results obtained in the time domain were Higher-Order Crossing (HOC) and statistical 

measures as the variance. In the frequency domain, the best results corresponded to the use 

of five bands (alpha, beta, gamma, delta, theta), Differential Entropy (DE), Differential 

Asymmetry (DASM), and Rational Asymmetry (RASM).  

For feature selection, a method was developed combining two criteria: computing the 

independence of pairs of features using the Mutual Information Matrix, a filter method. 

Additionally, a wrapper technique is used to measure the relevance of the features related to 

the classification results using Chi-Square Statistics applied in trials.  

Algorithms like MLP, Naïve Bayes, SVM, and ensemble classifiers such as Random Forest 

were examined for classification results. In the literature, we detected that the most used 

algorithms were linear as Naïve Bayes and SVM, but in our experimentation, the best yields 

were using KNN and Random Forest, which are less used. In the same way, good results were 

obtained with neural networks MLP. Therefore, these algorithms were chosen to be included 

in the systems developed for emotion recognition.  
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Table 14 presents performance results using different classification algorithms with all the 

initial features and a selection of characteristics using 10-fold cross validation.  

5.1 Feature extraction  

An initial satisfactory setup included a feature vector formed by statistical characteristics in 

the time domain, Higher-Order Crossing feature, power bands, Differential Entropy (DE) for 

each frequency band, and the combination of symmetrical electrodes: Differential Asymmetry 

(DASM) and Rational Asymmetry (RASM).  

5.1.1 Time -domain features 

Statistical-based characteristics were extracted as features in the time-domain.  The 

algorithm HOC was chosen because it is a feature extraction technique in the time domain that 

obtains relevant information but is not frequently used, according to the results we got in the 

literature review 

Statistical features: In the time-domain, information about EEG signals can be extracted 

using statistical calculations [168]. We selected essential features that contain the most 

relevant signal characteristics: mean and variance because mean is the average amplitude of 

the signal, and variance is a measure of dispersion. These features are defined for a raw signal: 

(X(n), n=1, …, N), as follows:  

Mean of the raw signal: 

𝜇𝑥 =
1

𝑁
𝛴𝑛−1

𝑁 𝑋(𝑛) 

 

   (2) 

The variance of the raw signal: 

𝜎𝑥
𝑧 =

1

𝑁
𝛴𝑛−1

𝑁 (𝑥(𝑛) − 𝜇𝑥)2 

 

 

(3) 

HOC: Higher-Order Crossing is a feature calculated as the number of oscillations through 

the zero-crossing. This feature helps indicate the pattern of periodic change in the EEG signal. 

When a filter is applied to the time series signal, it changes its oscillation and zero-crossing 

count. To compute HOC, it is necessary to make an iterative process where a specific 

sequence of high-pass filters is applied to the original signal and to count the resulting zero-



81 

 

crossings, resulting in a HOC sequence. Different types of HOC sequences can be obtained 

using different filter designs.   

HOC is estimated by counting zero-crossings with the difference operator Di of each filtered 

signal, as shown in equation 4, where M denotes de maximum order of the estimated HOC. 

HOC counts the various high-pass filtered time series changes in sign, using the difference 

operator D to detect these changes, i.e., the zero-crossings. The HOC features are defined by 

the sequence of D as follows:  

HOC = [D1, D2, …, DM] (4) 

Where M is the maximum order of the filtered signal where the number of zero-crossings was 

calculated, we used M=5, which gives enough information without being computationally costly. 

5.1.2 Frequency-domain features  

Additionally, the signals were converted to the frequency domain using the Fast Fourier 

Transform FFT to obtain more features. Then filters were applied to obtain the respective band 

of frequencies. We extracted five frequency-domain features: gamma rhythm (above 30Hz), 

beta (13 to 30 HZ), alpha (8 to 13 Hz), theta (4 to 7 Hz), and delta (0 to 4 Hz) waves using 

power spectral density PSD ratio divided by total PSD. 

Appropriate feature extraction is the key to constructing an efficient emotion recognition 

model. The features are expected to have the essential properties to discriminate among 

signals. We obtained features related to the electrode location and characteristics in the 

frequency domain.  

The signals are referenced to digitally linked ears (DLE) values for EEG spatial information, 

calculated in the left and right earlobes (1)  shown in Section 2.6 of this thesis. 

VA1 and VA2 are the reference voltages on the left and right earlobe. This way, the EEG data 

is broken down, considering each electrode. Thus, each channel contains spatial evidence of 

the location of its source. 

First, it is considered information obtained using FFT. Again, frequency filters in Python 

were used to separate the five bands. For example, Figure 22 shows five frequency bands from 

one of the experiment’s subjects.  
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Figure 22. Frequency bands for subject 1, trial 1 

EEG signals are highly complex and non-linear. Spectral entropy reflects the amount of 

non-linearity present in the EEG signal. It is a way to quantify, in a statistical sense, the amount 

of uncertainty or randomness in the pattern. This value serves to quantify the amount of 

information contained in the signal and its complexity. The differences in entropy generated by 

different emotional states are features proven to discriminate emotions [77]. For this reason, 

we computed as features Differential Entropy (DE) for each frequency band and the 

combination for symmetrical electrodes: Differential Asymmetry (DASM) and Rational 

Asymmetry (RASM).  

In the frequency domain, Differential Entropy (DE) and its derivatives, Differential 

Asymmetry (DASM) and Rational Asymmetry (RASM), measure functional dissimilarities. 

These features are calculated from the logarithmic power spectral density for a fixed length 

EEG sequence and the difference and ratios between the DE features of hemispheric 

asymmetry electrodes [77]. These attributes are related to the frequency domain and take 

spatial considerations into account.  

In the present work, we first transformed the signal into the frequency domain and then 

calculated differential entropy over each band as a relevant feature. DASM and RASM were 

computed to measure the DE’s differences between both cerebral hemispheres. 

DE is defined in (5) and (6). 

ℎ(𝑋) =  − ∫
1

√2𝜋𝜎2
𝑒

− 
(𝑥−𝜇)2

2𝜎2 log (
1

√2𝜋𝜎2
𝑒

− 
(𝑥−𝜇)2

2𝜎2 ) 𝑑𝑥
∞

−∞
 (5) 

 ℎ(𝑋) =
1

2
log(2𝜋𝑒𝜎2)        (6) 
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Where the series X is a Gauss distribution N(𝜇, 𝜎2)  where 𝜇 = 𝑚𝑒𝑎𝑛, 𝜎2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 for an 

EEG sequence of fixed length, DE is equivalent to the logarithm of the variance in a particular 

frequency band [81]. DE will correspond to a feature in each of the five power bands.  

DASM and RASM were calculated for each trial as the differences and ratios, respectively, 

between DE of 4 pairs of electrodes located in the left and right cerebral hemisphere to 

calculate h(Xileft) and h(Xiright) to obtain DASM and RASM in equations (7) and (8). Each pair 

of electrodes are located in the right and the left cerebral hemispheres, as shown in Table 11. 

DASM = h(Xileft) – h(Xiright)   (7) 

RASM = h(Xileft) / h(Xiright)   (8)   

Figure 23 shows the distribution of the initial 20 features (Power Bands-Mean Band 

Amplitude (MBA), DE, DASM, and RASM, for each band) and their respective labels for a 

sample case. The values of the 20 features are shown as computed for each quadrant in the 

valence-arousal space. These values of the quadrants are the four output labels HVLA, HVHA, 

LVLA, and LVHA. 

Table 11. Pairs of symmetrical electrodes located in each cerebral hemisphere 

Pair No. 
1 2 3 4 

Electrode position 1,2 3,4 5,6 7,8 
Channel Left FP1 C3 P7 O1 
Channel Right FP2 C4 P8 O2 
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Figure 23. Initial frequency features distribution vs. labels 

 

5.2 Classification Algorithms and Parameters 

To cover a wide range of algorithm types, we used the nearest neighbor, neural network, 

and ensemble classifiers, namely: kNN, MLP, and Random Forest, respectively.  

For classification, we selected the following algorithms: Random Forest [118], KNN [75], 

SVM [79], MLP [111], and a Convolutional Neural Network with one dimension (1DCNN) [113]. 

We chose the mentioned algorithms using three criteria: (1) because of their better 

performances compared with other tested, (2) since each represents different types of 

approaches, therefore we cover an ample range of types of machine learning algorithms: kNN 

is simple, non-parametric, Random Forest is an ensemble algorithm, MLP is a neuronal 

network, and we use it with only three layers, and 1DCNN is deep learning, and (3) because in 

the literature review we found that these are the algorithms that performed better for four 

quadrants in the valence-arousal space categorization as presented in Table 8 and 

summarized in Figure 12.   
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Additionally, the following classifiers were tested: Naive Bayes, Gradient Boosted Trees, 

Gaussian Process Classifiers, and AdaBoost. These algorithms generally generate lower 

accuracy values than kNN, ANN, Random Forest, and 1DCNN (Annex H).  

We applied 10-fold cross-evaluation because it measures an accurate performance 

estimate [169] computed after ten iterations of different train-testing splits. This evaluation 

metric allows training and testing in multiple data splits to evaluate the algorithm performances 

in ten different training and testing data. Cross-validation is a preferred evaluation method over 

hold-out because this last method depends on only one train-test split. In our trials, the results 

from hold-out tend to be higher than those obtained with 10-fold cross-validation; despite this, 

we favored the cross-evaluation method for its consistency.  

In the result tables of this document, we consider accuracy and not the other possible 

evaluation method derived from the confusion matrix because accuracy is the preferred method 

to evaluate classifiers’ performance, as we can confirm from Table 8 with data extracted from 

the literature review. Also, in our results (Annex H), accuracy is an excellent metric because 

we apply the algorithms in a balanced dataset with almost the same occurrences for each class. 

That is why in the classification results, the values of precision and recall are in the same range 

as the obtained accuracies. Therefore, for our experiments, the analysis of the mean 

accuracies is good enough to evaluate the classifiers’  performances. However, for further 

reference, the results of the other metrics are presented in Annex H for one hold-out sample.  

The algorithms were implemented using Python's SciKit-Learn (SKLearn) library [170], 

Tensor Flow, and Keras [171]. We obtained the parameters for each algorithm experimentally, 

maximizing the best performance. Some of these experiments are shown in  Annex H.  

All algorithms have the features or raw data as input vectors and classify the label emotion 

corresponding to the respective quadrant in the valence - arousal space. 

The accuracy, Recall, and F1 are computed from the confusion matrix as indicated by (9), 

(10), and (11), where TP = true positive, FP = false positive, TN = true negative, and FN = false 

negative, as shown in equation 5.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
      (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (10) 
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𝐹1 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
      (11) 

For our experiments, in the confusion matrix, the values 0,1,2, and 3 correspond to each 

quadrant of the emotion representation in the space valence-arousal (Annex H). The accuracy 

value in the result tables is computed as the average of the 10-fold cross validation accuracies. 

Detailed results with accuracies for each fold are also displayed in Annex H. 

Next, we will describe the algorithms’ parameters that will be used to classify the features 

obtained in the two datasets: Stock-emotions and Poker. They will also be used to test a subset 

of the DEAP dataset. 

5.2.1 kNN parameters 

For kNN, we tried for 3, 5, and 7 nearest neighbors (Annex H). For instance, for one of the 

datasets (Poker), we obtained mean 10-fold cross-validation accuracies of 85.15%, 82.06%, 

and 77.71% for 3, 5, and 7 nearest neighbors, respectively. Therefore, the best performances 

are achieved for 3 neighbors.  

The chosen parameters for this classifier are the following:  

Three neighbors: three nearest points are considered.  

Uniform weights: all neighbors are weighted equally. 

Euclidean distance is used for the computation of the nearest neighbors.  

5.2.2 MLP parameters  

The network has the feature vector as input and four outputs corresponding to each 

quadrant in the valence-arousal space. 

To define the parameters, we tried with a different number of nodes in three hidden layers. 

For example, in the Poker dataset with hidden layer sizes of (150,100,50) and (100,50,10), we 

obtained mean 10-fold cross-validation accuracies of 80.83% and 72.50%, respectively. Also, 

we tried other activation functions for the chosen configuration of hidden layers and number of 

nodes: Hidden layer sizes = (150,100,50) with ReLU and Tanh activation functions, and we got 

mean 10-fold cross-validation accuracies of 96.55% and 73.21%, respectively. (Annex H).  

After these trials, the preferred configuration is the following:  
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The classifier has three hidden layers with 100, 150, and 50 nodes, respectively.  

The activation function for the hidden layers is a rectified linear unit (ReLU).  

The solver is Adam which refers to a stochastic gradient-based optimizer because it works 

well and converges faster for large datasets like our EEG database.[172].  

The maximum number of iterations=500: The solver iterates until convergence or this 

number of iterations. We found that fewer iterations do not always converge. Experimenting 

with the limits of convergence, we establish this number of iterations. 

5.2.3 Random Forest parameters 

This algorithm uses a set of decision trees. Each tree performs a classification, and the 

class with the highest number of votes is included in the model prediction. This model works 

very well based on the logic that multiple classifiers that function as a committee work better 

than a single classifier. On the other hand, even though many trees may have the wrong 

classification, others are included in the correct categorization. The final decision will be 

accurate if the trees have a low correlation.  

To define the parameters of this classifier, we tried 10, 100, and 300 trees in the forest 

(n_estimators), and we obtained mean 10-fold cross-validation accuracies of 73.57%, 77.89%, 

and 62.14%, respectively (Annex H).  

After these trials, the chosen parameters are:  

Number of trees in the forest (n_estimators)=100  

The criterion for estimating a split's quality is Gini impurity and entropy for the information 

gain [173].  

Maximum depth of the tree=none; the nodes are expanded until all leaves are pure or 

contain less than two split samples.  

5.2.4 CNN parameters 

This algorithm was implemented as a neural convolutional network of one dimension 

(1DCNN). The proposed model is shown in Figure 24. 

L1 and L4 are convolutional layers with 16 and 32 filters. 
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L2 and L5 are Batch Normalization layers to help the convergence of the model and avoid 

overfitting.  

L3 and L6 are average pool layers that reduce the dimensionality of the data using a 2x2 

window.  

L7 is the flatten layer to connect to the classifier transforming the output of the last pool 

layer into a one-dimension input vector.  

L8, L10, and L12 through L12 are dense layers of the neuronal classifier with activation 

functions tanh, tanh, and softmax, respectively. Layer 12 has four outputs representing the 

labels for each quadrant in the valence – arousal space. 

L9 and L11 are dropout layers with 50% neurons randomly switched off to prevent 

overfitting.  

 

Figure 24. 1DCNN network configuration 

5.3 Classification without feature selection applied in the Stock-Emotion 

dataset  

The feature vector was composed of the five frequency bands, DASM and RASM values, 

statistical measures, and HOC series applied in the stock market-related dataset. The classifier 

inputs were processed using feature scaling to normalize them. This process helped the 

algorithms to converge more efficiently. The specified algorithms are applied, i.e., kNN, 

Random Forest, MLP, and 1DCNN. 
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Table 12 shows the accuracy results for 10-fold cross validation with the Stock-Emotion 

dataset and the selected algorithms.   

Table 12. Accuracy results  

Dataset Classifier Mean Accuracy 
(%) 

 
Stock-Emotion 

 

kNN 83.81 
MLP 86.81 

Random Forest 
1DCNN 

85.32 
84.65 

DEAP kNN 51.24 

 

Using the detailed parameters, the MLP algorithm had the best classification accuracy of 

86.81%. kNN had an accuracy of 83.81%, Random Forest 85.32%, and 1DCNN results are 

84.65%. All these results are better than the average value of 76.68% obtained from state-of-

the-art for four quadrant classification in the valence –arousal space (Figure 12).  

We also tested the KNN algorithm in a subset of the DEAP dataset considering the 

corresponding eight electrodes and obtained an accuracy of 51.24%. The same features were 

obtained in DEAP in the corresponding eight electrodes, and we fed them into a kNN classifier. 

The objective is to test the possibility of recognizing emotions using our generated datasets vs. 

a subset with eight channels from the DEAP public dataset. Table 12 presents the results. As 

shown, our model developed on our Stock-Emotion dataset has higher accuracy than executed 

in the DEAP dataset. Nevertheless, the model’s metrics on the DEAP dataset with our approach 

give a lower performance than the state-of-the-art and lower than other studies using complete 

DEAP data. This lower performance may be produced due to using only eight channels instead 

of the original 32 used for DEAP. 

The participants for the generation of the Stock-Emotion dataset mostly tagged three 

classes:  High Valence – High Arousal, Low Valence – High Arousal, Low Valence – Low 

Arousal. Each class is related to one fundamental emotion associated with stock trading: hope, 

fear, and regret, respectively. High Valence – Low Arousal was never labeled for the 

participants during trading because they were all beginners in stock trading, and neither was in 

a focused or relaxed emotional state. However, this dataset also has High Valence – Low 

Arousal samples, but they correspond to the baseline where participants were asked to relax 
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with open and closed eyes. Due to the differences in occurrences for the different classes, the 

datasets were first balanced using SMOTE before the classification process. 

5.4 Classification without feature selection applied in the Poker-game dataset 

Using the 14-channel EPOCx headset and amateur poker games participants, we obtained 

data transformed into CSV format. With this information, we linked the raw signals to the labels, 

transformed them into the frequency domain, and then applied filters to obtain the respective 

frequency band. We extracted the same five frequency bands and the HOC values and 

statistics in the time domain, DE, RASM, and DASM features, as we did before, to facilitate the 

comparison of results. Using two devices, Open-BCI for Stock-Emotion and EPOCx for Poker 

games, may allow us to compare results linked to a minimum change in the number of 

electrodes. Keep in mind that Open-BCI has eight electrodes, and EPOCx has 14 channels. 

The same four classifiers are used in this dataset: a non-parametric KNN, a neural network 

classifier MLP, a deep learning classifier 1DCNN, and an ensemble classifier  Random Forest, 

according to the criteria explained in section 5.2. The results of the initial trials with SVM, 

Gaussian Naïve Bayes, Decision Tree, and Ada Boost Classifier are shown in Annex H. 

The parameters for each algorithm are the same as described in Section 5.2. The 

classifiers’ parameters not described are set to default values. Results for each classifier are 

shown in Table 13 for mean accuracy for 10-fold cross validation. 

Table 13.  Accuracy results 

Dataset Classifier Accuracy (%) 

 kNN 85.15 

Poker game MLP 77.89 
Random Forest 

1DCNN  
96.55 
86.78 

DEAP      kNN       58.22 

 

Table 13 shows that Random Forest has better accuracy (96.55%), followed by 1DCNN 

(86.78%), MLP (77.89%), and kNN (85.15%). All the algorithms have high accuracy and work 

satisfactorily for a four-class quadrant classification compared with state-of-the-art 

performances that show an accuracy of 76.68% (Figure 12). 
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Again, we replicate this setup in the DEAP dataset, using the data for the corresponding 14 

channels, consuming the same kNN classifier. The accuracy results in our dataset were higher 

than those obtained using the DEAP database. Again, the model’s metrics on the DEAP dataset 

with our approach give a lower performance than the state-of-the-art and lower than other 

studies using complete DEAP data. This lower performance may be produced due to using 

only eight channels instead of the original 32 used for DEAP. 

5.5 Feature selection and classification results for Stock-emotion and Poker 

datasets 

This section discusses the methods for selecting the most relevant features to enter into 

different algorithms to build an optimal emotion recognition model. This section will use the 

features described in Section 5.1 as the original input vector, and then we will apply feature 

selection methods to test new models using the two datasets developed in our experiments: 

Stock-Emotion and Poker.   

5.5.1 Feature Selection 

As mentioned, features with information from the EEG signal were extracted, taking into 

account the frequency domain and spatial information related to the electrodes’ symmetrical 

location. Power bands, DE, DASM, and RASM, were calculated for each of the five frequency 

bands of the EEG signal: Delta (0-4Hz), Theta (4-7Hz), Alpha (8-12Hz), Beta (12-30Hz), and 

Gamma (30-80Hz). Consequently, this yielded a vector of characteristics made up of 20 

attributes. 

Feature selection may allow us to obtain an optimized feature vector. We aimed to get a 

classification with less possibility of overfitting, reducing the number of features. We used 

feature selection methods to feed the classifiers and compare performance: filter, wrapper, and 

embedded methods. The mutual information matrix is used as a filter algorithm that evaluates 

each pair of features’ correlation; the goal is to have information to discard redundant features. 

Chi-square statistics, a wrapper method, is used after trial classification to help eliminate 

features that are not significant since they do not influence the classification; here, the objective 

is to discard irrelevant characteristics. Then, we combined the results of filter and wrapper 

methods to select no redundant and relevant features.  
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Therefore, we test if the features are statistically independent in the first step. The mutual 

information between two random variables x and y is calculated and defined using (12). 

𝐼(𝑥; 𝑦) = ∬ 𝑝(𝑥, 𝑦) log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑑𝑥𝑑𝑦  (12) 

Where p(x) and p(y) are the marginal probability density functions of x and y, respectively, 

and p(x, y) is their joint probability function. If I(x, y) equals zero, the two random variables x 

and y are statistically independent [98].  

Figure 25 presents each attribute's mutual information matrix values in the Stock-Emotion 

dataset. MBA represents Mean Band Amplitude. This matrix can detect a correlation between 

the different pairs of features. In this figure, red cells show more correlation between features 

present in rows and columns, and blue cells show no correlation. In the middle of these 

extremes are intermediate values. If two features are not statistically independent, i.e., they 

have a high correlation, eliminating one should be considered.   

It is also essential to consider the chi-squared statistics results, which evaluate each 

feature’s significance related to the output classes. In our proposed feature selection method, 

Mutual Information Matrix and Chi-square statistics are algorithms that complement each other 

strengths.  

The Chi-square method is a statistical approach to evaluate the dependency between two 

variables and differences in distributions. This algorithm evaluates features individually to 

determine their influence over the output classes, so it is a method that is applied after 

classification results.  

The features were chosen considering those not easily accessed because they are not 

already developed in known libraries. Additionally, the features were selected if we found they 

provide sufficient information for the classification; this can be deducted using the chi-square 

value. 
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Figure 25. Mutual Information Matrix 

The algorithm evaluates each feature’s significance concerning the output classification. 

The higher the Chi-square value, the more the classifier response depends on the feature, and 

the attribute should be selected. If a feature is not significant for the response, it may be 

discarded from the model [174].  

The chi-square statistic is defined in (13).  

χ𝑐
2 = ∑

(𝑂𝑖−𝐸𝑖)2

𝐸𝑖
  

                    

(13)                                      

 

( 

Where: i = number of intervals, c = degrees of freedom, O = observed value(s), E = expected 

value(s). The larger the chi-square value, the more significant the feature is, i.e., it has more 

influence on the emotion classification.  

Chi-square statistics show the weight of the features in the classification. Less significant 

features appear to be the indexes RASM and DASM for the gamma and delta bands, 

respectively (Figure 26). Delta and its differential entropy have the most weight in the 

classification, followed by the Alpha and Gamma bands and their differential entropy. These 

findings align with assertions made in other works. In [175], the authors stated that the delta 

band increased the synchronized activity between the two cerebral hemispheres, particularly 
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in the emotions with negative valence; this feature can be associated with the power band’s 

amplitude and the differential entropy. In [164], a negative correlation was reported in the Alpha 

and Gamma bands for arousal. 

Figure 27 shows the remaining features after the selection made considering Mutual 

Information Matrix and Chi-square statistics. According to the matrix in Figure 25, there is a 

strong correlation between the power bands and their differential entropy. Thus, power bands 

were omitted from the remaining features. The values of the seven remaining features are 

shown as computed for each quadrant in the valence-arousal space. These values of the 

quadrants are the four output labels HVLA, HVHA, LVLA, and LVHA. 

  

Figure 26. Attribute weight by chi-square statistics. 
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Figure 27. Remaining features after feature selection vs. labels. 

5.5.2 Classification with feature selection  

A classification algorithm is used to infer the emotional states of the experiment’s 

participants. The system uses two phases: 1) training to generate models and 2) testing to 

evaluate them in new data. The classes that the algorithms recognize correspond to the four 

quadrants of the Valence-Arousal space, related to the critical emotions associated with stock 

trading: fear (LVHA), hope (HVHA), sorrow, or regret (LVLA), and a calm state (HVLA). 

The system trains the Stock-Emotion, Poker game, and DEAP databases. Training and 

testing are carried out using 10-fold cross-validation.  

 Necessary adaptations are made to test the models in DEAP. Firstly, DEAP has 32 EEG 

channels configured with the 10-20 system. From DEAP, only eight electrode data are 

considered to correspond to the eight channels configuration of the Cyton BCI device used to 
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obtain Stock-Emotion data and the 14 channels for the EPOCx device. This correspondence is 

possible because all three devices use the same 10-20 system for electrode location.   

Furthermore, from the attributes from DEAP, only valence and arousal labels are utilized 

because our approach does not consider dominance or liking. Finally, physiological signals 

were not included.  

For classification, again, we use Random Forest, KNN, SVM, MLP, and 1DCNN. The 

system performance was evaluated using 10-fold cross-validation using the tests carried out in 

Stock-Emotion and DEAP.  

This thesis used Random Forest, KNN, MLP, and 1DCNN algorithms to classify emotions 

using previously described feature vectors. The purpose is to compare results from different 

types of classifiers using an original set of features and a subset of these characteristics.  

The classifiers were trained and tested using the described original feature described in 

section 5.5.1: five frequency bands, DE for every band, DASM y RASM for eight pairs of 

channels in each frequency band, for a total of 20 initial features. The process also used a 

feature selection procedure that combines filter and wrapper algorithms to obtain a feature 

vector with only seven chosen features. Filter methods for feature selection evaluate the feature 

relevance by their correlation, so the characteristics with redundant information can be 

eliminated. Wrapper methods measure the influence of the features in the classification. kNN 

and 1DCNN classifier, were also used to evaluate results [99] when we fed them with raw data.   

The system was trained and tested for comparison using all the initial features, processing 

the selected attributes, and using raw data. The selection process was successful if the 

classification performance was maintained or improved using the selected features versus the 

original ones. Then, it would be possible to state that only the redundant information was 

eliminated while retaining the features relevant to emotion recognition.    

The parameters of the algorithms are described in section 5.2.  

In summary, classification training and testing were done with raw data, original features, 

and selected features. The results with the original features (without feature selection) were 

shown in sections 5.1 and 5.2 obtained in the three databases: Stock-Emotion, Poker datasets, 

and a subset with eight and 14 channels of the DEAP dataset. In this section, we again 
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examined the results of the application of the algorithms in the three datasets, adding 

classification with feature selection and processing with raw data.  

Stock-Emotion, Poker game, and DEAP are unbalanced datasets with more labels in two 

classes than in the other two, introducing a bias in the classification. For these reasons, for all 

the experiments, we balanced the number of samples in each class using SMOTE and data 

augmentation in the minority classes [165]. Again, to avoid a lack of significance in our results, 

we applied 10-fold cross-validation.  

Table 14 shows mean accuracies for the experiments from the previous section that used 

the original feature vector without feature selection. We add classification with an input vector 

with feature selection. Table 14 also presents accuracy values for classification made with raw 

data.  The mean accuracies obtained in our work with our datasets Stock-Emotion and Poker 

are comparable and even better than the State-of-the-Art’s best results, corresponding to four 

classes in the quadrants of the valence-arousal space (76.68%) (Figure 12). 

It is worth mentioning that authors in [176] experimentally determined that extracting 

information from eight channels is needed to obtain enough performance in an emotion 

recognition system for practical use. In the present work, that hypothesis is confirmed between 

a range of electrode variation because, without feature selection, the results are in the same 

value range using Stock-Emotion and Poker datasets with eighth and 14 channels, 

respectively, i.e., a six electrode variation. Nevertheless, the performance with the DEAP 

dataset is diminished, so maybe the change from 32 channels to eight and 14 influences the 

results because is a 24 and 18 electrode decrease. 

The goal of applying the algorithms in a subset of the DEAP dataset was to test how good 

the three datasets, Stock-Emotion, Poker, and DEAP, are at using emotion recognition 

algorithms. The results with Stock-Emotion and Poker were consistently better in the 

classification results. But again, these results may be due to the DEAP´s decreased number of 

electrodes. 

On the other hand, Table 14 demonstrates that feature selection maintains or improves 

accuracy in most of the experiments. In the Stock-Emotion dataset for kNN, Random Forest, 

and MLP, the mean accuracy with the original feature vector is 83.81%, 86.81%, and 85.32%, 

respectively. It improves using the selected features with the following values: 84.78%, 90.60%, 

and 91.30% for kNN, Random Forest, and MLP.  In the Poker dataset for Random Forest, MLP, 
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and 1DCNN with the original features, we have mean accuracies of 77.89%, 80.83%, and 

86.78%, respectively. With input vector with selected characteristics, we have higher mean 

accuracies of 78.28%, 83.27%, and 86.79%, respectively.  Mean accuracies for input vectors 

with selected features decrease sightly only using 1DCNN for Stock-Emotions and kNN for 

Poker dataset with 84.65% versus 84.36% (minimal difference) and 85.15% versus 82.06% for 

original features versus features chosen, respectively. One possible reason for this 

improvement is that in the proposed feature selection process, we eliminate the redundant and 

the irrelevant features, i.e., the pairwise features correlated between them (redundant) and the 

features that are not influential concerning the target classes (irrelevant). In most cases, we 

believe that removing redundant and irrelevant features reduces noise and increases the 

contrast among classes. It is worth noting that all classification results using our original and 

selected features are better than the average value of 76.68% of the state-of-art (Figure 12). 

The results using raw data applying kNN and Random Forest in the Stock-Emotion dataset 

are 30.85% and 51.10%, respectively. Mean accuracies using raw data in the Poker dataset 

with kNN and Random Forest are 38.36% and 51.62%, respectively. Mean accuracies for 

algorithm kNN for 8-channels DEAP and 14-channels DEAP are 47.81% and 45.01%, 

respectively. All of these numbers correspond to low accuracies and demonstrate the value of 

extracting features from the raw data because it improves the performance of the classifiers. 

Our justification for this is the same as above: the contrast among classes improves when 

removing data that does not contribute to the classification's pattern recognition.   

Additionally, it is interesting to notice that using neural networks with embedded feature 

extraction processes produces better mean accuracies obtained from raw data. MLP presents 

a mean accuracy of 64.30% for the Stock-Emotion dataset; 1DCNN has an accuracy of 

67.17%%. MLP gives a mean accuracy of 64.11% for the Poker dataset, and the 1DCNN result 

is 68.87%. For the DEAP dataset subset of eight channels, 1DCNN has a mean accuracy of 

59.90%. For the DEAP dataset subset of 14 electrodes, 1DCNN presents an accuracy of 

60.10%. These values are higher than those obtained in raw data with kNN and Random Forest 

that do not have an embedded feature extraction process. Neural network algorithms work to 

assign weights to each input, while Random Forest and KNN do not have this process. This 

last consideration explains the better results with raw data with MLP and 1DCNN. 

Also, feature extraction reduces the program´s execution times by several days, as seen in 

Table 15, which presents data for execution time for kNN and 1DCNN for Stock-Emotions and 
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Poker datasets with original features, selected features, and raw data. The execution time is 

critical, considering that most emotion recognition applications involve real-time programs.  

Results validated the proposed feature extraction process that gives better results than raw 

data classification. Also, the results validate our proposed feature selection method because 

combining Mutual Information Matrix and Chi-square statistics for feature selection maintains 

or improves performances. The algorithms respond better and better accuracies are obtained 

when they are fed with relevant information, not redundant, using features that extract pertinent 

information from the raw data. We justify these results with the reasoning that removing 

redundant and irrelevant data reduces noise and increases the contrast between classes. With 

our proposed method, the chosen features have two characteristics: they do not correlate 

among them, i.e., they are not redundant, and they directly affect the classification results. We 

achieve these types of informative features using proper feature extraction and later a 

combination of feature selection techniques: the mutual information matrix, where it is shown 

that the selected features do not correlate with each other, and their chi-squared values confirm 

that results depend on them; meaning that the selected features are not redundant and 

relevant, respectively. 

Table 14. Classifiers Performances 

 

 

 

Dataset 
 

Classifier 

Accuracy with 
initial feature 
selection (%) 

Accuracy with – 
raw data 

 
Accuracy with 

feature selection 
(%) 

Stock-Emotion 

KNN 83.81 30.85 84.78 

Random Forest 86.81 51.10 90.60 

MLP 85.32 64.30 91.30 

1DCNN 84.65 67.17 84.36 

Poker game 

KNN 85.15 38.36 82.06 

Random Forest 77.89 51.62 78.28 

MLP 80.83 64.11 83.27 

1DCNN 86.78 68.87 86.79 

DEAP (8 channels for 
Stock Emotion 
comparison) 

KNN 51.24 47.81 50.55 

1DCNN 67.40 59.90 65.07 

DEAP (14 channels 
for POKER 

comparison) 

KNN 58.22 45.01 50.73 

1DCNN 64.86 60.10 64.10 
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Table 15. Programs execution times for KNN in Stock-Emotion and Poker Datasets 

 KNN execution time (secs.) 

Stock-

Emotion 

Dataset 

Poker 

Dataset 

Original features 8.75 2.88 

With feature selection 8.83 2.3 

Raw data 342647 363413 

 

With these outcomes, we compare the performance of the systems. Making a compilation 

of what has been done, we can say that our systems use two different datasets with a different 

number of channels: 8 for the Stock-Emotion and 14 for Poker. Stock-Emotion and Poker 

datasets were generated through two active approaches to emotion elicitation: trading in a 

competitive stock market and online poker games following a similar protocol for data 

acquisition; two initial minutes of relaxation for baseline and emotion auto-labeling each minute. 

The datasets were preprocessed to eliminate artifacts and to balance the classes. The 

emotions provoked by stock trading activities and online poker games were tagged using the 

self-assessment manikin method. The user-made labels were translated to four discrete states 

in each of the four quadrants of the Valence-Arousal space: HVHA, HVLA, LVLA, LVHA, to 

further differentiate emotional states in our classification models. We experimented with 

classification with the original features and also proposed a system that included a selection 

process.  

Feature extraction is essential when manipulating EEG signals involving large amounts of 

data. We combined time, frequency, and spatial information to define the calculated features. 

Time attributes were extracted using statistical methods. The mean amplitudes of five 

frequency bands (Delta, Theta, Alpha, Beta, and Gamma) were calculated in the frequency 

domain. Additionally, Differential Entropy (DE) and its derivatives Differential Asymmetry 

(DASM) and Rational Asymmetry (RASM) were obtained to measure functional dissimilarities 

between the cerebral hemispheres (location information). The original vector had 20 features, 

with interesting features in time, frequency, and spatial domains. The classification results with 

these original features are better than the state-of-the-art accuracy values, demonstrating that 

these 20 characteristics extract essential information to recognize emotions in the valence-

arousal space's quadrants.  
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However, we aimed to optimize this input feature vector and tried to reduce the number of 

input characteristics using a proposed combination of methods for feature selection. 

After feature selection, seven characteristics were chosen using Mutual Information Matrix 

and Chi-squared statistics: the differential entropies for Delta, Alpha, Gamma y Beta bands, 

and the DASM for Delta, Alpha, and Gamma bands were the most influential, i.e., not redundant 

and relevant, in the four-classes emotion classification.  

The findings concerning each feature’s relevance in the classification align with assertions 

made by other papers corresponding to the relationship among information associated with 

frequency bands and emotions. For example, our dataset does not have calm state-related 

samples (except for baseline), and interesting enough, the Theta band and its related features 

were eliminated in the selection process. This finding supports what was already mentioned in 

[14], which linked this band with the presence of mindful states.  

Another chosen feature was DASM obtained in the alpha band associated with asymmetric 

activity at the frontal site, which is connected with emotion. This result agrees with [12]. On the 

other hand, RASM features were eliminated because they had redundant information already 

present in DASM.  

The results show that combining a filter (Mutual Information Matrix) with a wrapper method 

(Chi-square statistics) for feature selection allows us to get a valid feature selection process. 

According to the results, it is possible to state that the selected features carry the relevant 

information for classifying the emotions in one of the four quadrants of the valence-arousal 

space. 

Using three criteria explained in section 5.2, we chose the following classifiers: kNN, 

Random Forest, MLP, and 1DCNN. Outcomes with raw data, original features, and selected 

features were compared. Feature extraction greatly enhanced the classifiers' performances 

because raw data have many irrelevant patterns that affects emotion recognition. Then, feature 

selection also helped, in most cases, to improve the classifiers’ performance.  

The MLP and 1DCNN algorithms are neural networks that have embedded feature 

extraction and selection methods; therefore, they work better in raw data than the classifiers 

that are not neuronal networks. All the classifiers perform worse with raw data than with 

features probably because too much data corresponding not to one minute but to every second 

with 128 samples each can be bad for classification. This amount of data for each label (128 x 
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60 rows of data instead of one row for a label) can cause overfitting, lower performance, and 

produce an inefficient model. This effect can be justified by reasoning that any regions of the 

data can be presented with patterns that correspond to few or no observations, making the 

classifier lose accuracy in the prediction for overfitting to conform to more frequent patterns in 

the data.  

The results show that combining a filter (Mutual Information Matrix) with a wrapper method 

(Chi-square statistics) for feature selection allows us to get a valid feature selection process. 

According to the results, it is possible to state that the selected features carry the relevant 

information for classifying the emotions in one of the four quadrants of the valence-arousal 

space.  

5.5.3 Statistical analysis of the significance of the results 

Using the EEG data generated for 12 participants during at least 20 minutes of 

experimentation gives satisfactory classification results but is also justified with statistical 

analysis of the results as presented below. In this section, we statistically demonstrate that 12 

participants producing 20 minutes of EEG signals for eight channels and 128 sampling 

frequencies (trading experiments) are enough data to create a dataset of sufficient size to be 

statistically significative. Therefore, this demonstration also applies to a dataset of a similar size 

for 6 participants in experiments that collect around 45 minutes of EEG signals for 14 channels 

and 128 sampling frequencies (poker games experiments). 

Each observation is modeled as X ~ Ber(p). It means a Bernoulli variable with an unknown 

parameter (accuracy) “p.”  We are modeling a prediction in which each input record was 

classified correctly (=1) or incorrectly (=0). Observation is not the input vector in this case but 

whether the prediction with that input vector was correct or incorrect. X is the variable with 

which we are modeling the accuracy of this algorithm that follows a Bernoulli distribution. 

For instance, we took 149619 samples of X ∈ {0,1} and ∑ 𝑋𝑖 𝑛
𝑖=1 = 105341, where n=149619. 

We also assumed the samples were independent and identically distributed, given that they 

come from the same subject. 

Each Xi takes 1 when correctly classified and 0 when it is incorrect.  

We can therefore calculate our accuracy estimator as follows in (14):  
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x̄n =
1 

𝑛
  ∑ 𝑋𝑖𝑛

𝑖=1  =0.7041        (14) 

According to the Law of Large Numbers (LLN) applied in (15):  

x̄n 
𝑃,𝑎𝑠.

𝑛→∞
→p          (15) 

where p is the unknown accuracy parameter that we estimate with our sample. Also, “P” 

and “a.s” denote convergence in probability and almost surely. 

Then, according to the Central Limit Theorem (CCT) in (16):  

√𝑛 
�̄�𝑛−P

𝜎
 

(𝑑)

𝑛→ ∞
→ 𝑁(0,1)        (16) 

Where 𝜎 is the standard deviation of the variable X and N(0,1) has a standard deviation (d).  

Therefore, we have the following statistical model in (17):   

({0,1], ( Ber(p)p ∈ {0,1} )        (17) 

The mean and variance of our Bernoulli variable are p and p(1-p), respectively.  

We define the estimators for the mean and variance as �̂� and 𝑉𝑎𝑟(�̂�) in equation (18). 

Where 

 𝑉𝑎𝑟(�̂�) = 𝑉𝑎𝑟(x̄n) = 𝑉𝑎𝑟
1

𝑛
(∑ 𝑋𝑖 𝑛

𝑖=1 ) = 
𝑉𝑎𝑟(𝑝)

𝑛
 = 

𝑝(1−𝑝)

𝑛
    (18) 

We define the confidence interval in equation (17):  

lim 
𝑛 → ∞

𝑃 [I ∋ 𝑝] ≥ 1 – α, ∀ p ∈ Θ (all the universe of the possible parameters) (19) 

The parameter p is the Bernoulli variable we are modeling. To proceed, we used the CLT, 

replacing variables and using the Slutsky theorem to get the confidence interval I in equations 

(20) and (21) 

√𝑛 
�̄�𝑛−P

√𝑝(1.�̂�)
 

(𝑑)

𝑛→ ∞
→ 𝑁(0,1)        (20) 

I = [ x̄n - 
𝑞𝛼/2 √�̂�(1.�̂�)

𝑛
 , x̄n + 

𝑞𝛼/2 √�̂�(1.�̂�)

𝑛
 ]     (21) 
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Where: 

lim 
𝑛 → ∞

𝑃 [I ∋ 𝑝] = 1 – 𝛼         (22) 

where ((1 − 𝛼 ) is confidence level, 𝛼 is significance level)  

Where P in equation (20) is the probability of the event's occurrence described inside the 

parenthesis, which is the Interval containing the parameter p.  We then define the hypothesis 

test in (23) and (24) :  

H0: p = 0.7041         (23) 

H1: p ≠ 0.7041         (24) 

Where H0 is rejected if 𝜑 = 1 given that 𝜑 = 1 {√𝑛 
|�̄�𝑛 −0.7041| 

√0.7041 (1−0.7041)
  ≥ 𝑞𝛼/2} (25) 

Using the hypothesis test 𝜑 and the Φ function of the standard normal distribution, it is 

possible to compute de p-value of the mentioned test (equation (26)).  

p-value = 2 * (1 – Φ (Tn)), where Tn = 
|�̄�𝑛 −0.7041| 

√0.7041 (1−0.7041)
    (26) 

Replacing and computing we have:  

p-value = 0.974074        (27) 

This p-value indicates that it is impossible to reject H0 even at a very high 𝛼. Considering 

that 𝛼  generally has values much lower than 0.05 or 0.10, H0 will not be rejected. This is 

because the p-value measures the probability of getting a more extreme value than the one 

you got from the experiment. If the p-value is greater than alpha, the null hypothesis is 

accepted. If it is less than alpha, it is rejected the null hypothesis. In this case, the data does 

not allow to discard that the parameter p (accuracy) is 0.7041. Moreover, the p-value is 

exceptionally high, indicating that the null hypothesis (p = 0.7041) is almost certainly true 

(because our sample size is considerable).  

As an additional (and more traditional) calculation, it is also possible to compute that the 

accuracy (p) is in the interval [0.704094, 0.704106] with a confidence interval of (1- 𝛼) = 0.95 

(95% confidence level with 𝛼 = 0.05).  
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Both approaches corroborate the accuracy of our experiment and are in line with the 

asymptotic results of the CLT and LLN when n is greater than 30 (in our case, it is well above 

that sample size, so our results make sense). The same consideration applies to the rest of the 

accuracy results. Therefore, the results obtained with the size of our datasets obtained with 12 

participants are statistically significant.   

This statistical analysis could be repeated for each algorithm, but the results will be similar. 

In other words, we can extend the results of this statistical proof to the rest of the algorithms 

used in this thesis. Specifically, as this statistical proof concludes that the algorithm's accuracy 

of 0.7041 falls within the confidence interval of (0.704094;0.704106), the precision of our 

estimate of the accuracy of our algorithms is extremely high (with a 95% confidence level). 

Extending to the rest of the algorithms, this same statistical proof will give us the same 

conclusions because of n→∞ in these other algorithms. We can say this because n is much 

greater than 30, a general rule of thumb that approximates well according to the Law of Large 

Numbers (LLN). 
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6. CONCLUSIONS  

In this thesis, several contributions were made. The work was initiated with a systematic 

review of the literature on emotion recognition using EEG signals and machine learning to 

identify, evaluate, and synthesize research results in the field to find a niche to work.  

One of the findings was that no public datasets were generated using interactive and 

dynamic ways for emotion elicitation. The most common methods to provoke emotions for 

recording EEG-related signals are passive because the participants only receive stimuli (video 

and sound) and do not respond to them. Still, they do not interact with the world around them. 

Therefore, obtaining and making publicly accessible datasets generated using a different 

strategy for emotion elicitation would be a helpful contribution in this study area to demonstrate 

the efficiency of the valence-arousal data acquired that way. 

We developed two datasets. Stock-Emotion will be publicly available for emotion 

recognition using EEG signals. The proposal of interactive and dynamic ways for emotion 

elicitation was presented: stock market trading activities and playing of online poker games. In 

the first dataset, each participant was not an expert and faced different and unique market 

conditions (inherent to simulated live trading), so the experiment offered new and diverse 

circumstances to the individuals. In the same way, poker games have a random element and 

therefore offer variable scenarios. The participants in the poker games experiments were also 

amateurs.  

The proposed methods provoked emotions that were tagged each minute using valence-

arousal definitions. The labels were related to the key emotions that influence trading: fear (low 

valence - high arousal), regret or sorrow (low valence - low arousal), hope (high valence - high 

arousal), and a relaxation state (high valence - low arousal). This fourth state is ideal for traders 

since it gives more objectivity to their decision-making. Simultaneously, the other three 

emotions can somehow affect judgment and lead to incorrect decisions. Manikin assessment 

tools were used for participants to label their emotions. 

It would be intended that traders and poker players become aware of their emotions to 

facilitate their management and achieve an optimal affective state for their activities. 

Interestingly, in our experiments, the traders did not label any emotion as a relaxed state, 

except in the baseline, but the poker players did.  
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Once we had the datasets, we considered that working with raw data limited the long time 

necessary to process the information for emotion recognition; as presented in Table 15, these 

raw data processing times are in the range of days. These times will make difficult to use these 

algorithms in real-time applications. Also, raw data presents infrequent patterns that diminish 

the classifiers' capacity to recognize emotions, as shown in Table 14.  

We extracted features in the time, frequency, and spatial domains to obtain appropriate 

information for identifying emotional states and fed the classifiers considerably fewer data to 

enhance their performances and improve their response speed. Time is a critical criterion 

because the final goal for emotion recognition is to work in real-time.   

Considering that feature selection is vital for analyzing EEG data because even with feature 

extraction, it is high-dimensional, it was clear that such a strategy was a point to be taken into 

account. Consequently, the present work proposed a feature selection process as a blend of 

two methods: Mutual Information Matrix (MIM), which presents correlations between features, 

and Chi-squared statistics that ponder the significance of each feature related to the output 

classes. First, the information of the MIM allows the elimination of redundant characteristics. 

Then, Chi-square statistics are applied over the mutually exclusive classes to evaluate the 

relationship between features and classification outputs; thus, only significant characteristics 

are maintained. Feature selection allows choosing the most relevant features, and with fewer 

but more informative inputs, it is possible to reduce processing time while maintaining or 

improving classification performance.  

The suggested emotion elicitation methods effectively provoked emotions related to trading 

and poker games, and our systems were capable of recognizing them. Due to the subjective 

aspect of discriminating and self-labeling emotions and the complexity of EEG signals, EEG-

based BCI systems for emotion recognition do not readily have high accuracy. However, the 

system’s performance in this research is better than the state-of-the-art systems that recognize 

a similar number of categories for emotion recognition [2]. The state-of-art presents an 

accuracy of 76.68% for emotion classification in the four quadrants of the valence-arousal 

emotion representation space, as presented in Figure 12 in the Literature Review chapter. Our 

results have higher values with both the original features and with feature selection. 

The importance of feature extraction and selection and the efficacy of our proposed 

methods, using shallow algorithms and neural networks, were also demonstrated in the results 
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in Table 14. If we compute the average accuracy over the four classifiers' performances, we 

get the following results for average mean accuracy:  

- For Stock-Emotion, the original features produce a value of 85.15%, and the selected 

features generate a performance of 87.76%. There is an improvement of selected features over 

original characteristics. The raw data got a mean accuracy of 53.36%, which is significative 

less than the ones obtained with features.  

- For the Poker dataset, the original features produce a value of 82.66% versus 82.60% 

from selected features. In this case, for a slight difference, the better results are from the original 

features, but mostly we can be said that the results are maintained with and without feature 

selection. The raw data, on the other hand, has a performance of 55.74%, which is smaller 

than the results with features.  

- With a subset of 8 and 14 channels of the DEAP dataset, the accuracy results with the 

same machine learning algorithms are minor in all cases: with original features, raw data, and 

selected features. To explain the better classification results for our datasets, we have to 

consider the influence of using a decreased number of electrodes from 32 in the original dataset 

to 8 and 14. Also, we might dare to speculate that in our data, being the participants motivated 

to have emotions actively, to take actions, and make decisions in the market or the poker game, 

perhaps their feelings are more intense and easier to recognize by the algorithms. While in the 

DEAP dataset, the emotions have a passive way of elicitation: just watching videos. However, 

the presented results are not conclusive in this sense.  

It is important to notice that neural networks (MLP and 1DCNN) produce better results with 

raw data than other algorithms such as kNN or Random Forest. The explication for that is the 

capacity of the neural networks to extract features as embedded characteristics in the weight 

assignment process.  

We can conclude that feature extraction and selection, using algorithms that extract 

necessary information from the EEG signal is better than using raw data. Moreover, feature 

selection with criteria that produce non-redundant and relevant information allows results that 

maintain or improve performance.  
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