

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE INGENIERÍA DE SISTEMAS

RANSOMWARE DETECTION BY COGNITIVE SECURITY

THESIS SUBMITTED AS PART OF THE REQUIREMENTS FOR THE AWARD
OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN INFORMATICS

JUAN ALBERTO HERRERA SILVA

juan.herrera@epn.edu.ec

SUPERVISOR: PHD. MYRIAM BEATRIZ HERNÁNDEZ ÁLVAREZ

myriam.hernandez@epn.edu.ec

CO-SUPERVISOR: PHD. LORENA ISABEL BARONA LÓPEZ

lorena.barona@epn.edu.ec

Quito, march 2023

 THESIS

For the award of the degree of

DOCTOR OF PHILOSOPHY

IN INFORMATICS

Resolution RPC-SO-43-No.501-2014 of the Consejo de Educación Superior

Presented by

JUAN ALBERTO HERRERA SILVA

Thesis supervised by Myriam Beatriz Hernández Álvarez,

Professor of the National Polytechnic School and co-

supervised by Lorena Isabel Barona López, Professor of

the National Polytechnic School.

Oral examination by the following committee:

Sandra Patricia Sánchez Gordón, Ph.D.
Escuela Politécnica Nacional (EPN), Coordinator

Tania Elizabeth Calle Jiménez, Ph.D.
Escuela Politécnica Nacional (EPN), Opposing Member

Jorge Sá Silva, Ph.D.
Universidad de Coimbra – Portugal, External Examiner

Enrique Vinicio Carrera Erazo, Ph.D.

 Universidad de las Fuerzas Armadas (ESPE), External

 Examiner

Luis Felipe Urquiza Aguiar, Ph.D.
Escuela Politécnica Nacional (EPN), Internal Examiner

Ransomware Detection by Cognitive
Security

(en inglés)

i

DECLARATION

I hereby declare under oath that I am the author of this work, which has not previously
been presented for obtaining any academic degree or professional qualification. I also
declare that I have consulted the bibliographic references included in this document.

Through this declaration, I transfer my intellectual property rights corresponding to this
thesis, to the Escuela Politécnica Nacional, as established by the Intellectual Property
Law of Ecuador, its Regulations and the current institutional norms.

I declare that this work is based on the following articles of my authorship (as main
author or co-author) related to the title of this thesis:

Journals:

 J. A. Herrera Silva, L. I. Barona López, Á. L. Valdivieso Caraguay, and M.
Hernández-Álvarez, “A Survey on Situational Awareness of Ransomware
Attacks—Detection and Prevention Parameters,” Remote Sens., vol. 11, no. 10,
p. 1168, May 2019.

 J. A. Herrera Silva, F. Bazante, L. I. Barona López, Á. L. Valdivieso Caraguay,
and M. Hernández-Álvarez, “Dataset de Ransomware basado en Análisis
Dinámico,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., no. E23, pp. 248–241, 2019.

 J. A. Herrera-Silva, M. Hernández-Álvarez, “Dynamic Feature Dataset for
Ransomware Detection Using Machine Learning Algorithms”. Sensors, Volume
23, Issue 3, 1053, January 2023

Conferences:

 J. A. Herrera Silva and M. Hernandez-Alvarez, “Large scale ransomware
detection by cognitive security,” in 2017 IEEE Second Ecuador Technical
Chapters Meeting (ETCM), 2017, pp. 1–4.

ii

 J. A. Herrera Silva, F. D. B. Veloz, L. I. B. López, Á. L. V. Caraguay, and M.
Hernández-Álvarez, “Ransomware dataset based on dynamic analysis,” in
CSEI, 2019.

 J. A. Herrera Silva and M. Hernandez-Alvarez, “Deployment of Ransomware
Detection Using Dynamic Analysis and Machine Learning” in International
Conferences on Human Factors in Cybersecurity (AHFE 2023), 2023. Accepted.

I also declare that I have acknowledged the collaboration of third parties, and the
contribution made by other published or unpublished material.

Juan Alberto Herrera Silva

iii

CERTIFICATION

I certify that Juan Alberto Herrera Silva has carried out his research under my
supervision. To the best of my knowledge, the contributions of this work are novel.

 Myriam Beatriz Hernández Álvarez

ADVISOR

 Lorena Isabel Barona López

CO ADVISOR

iv

ACKNOWLEDGEMENTS

First, thanks to God for giving me health and knowledge to allow me to reach the

culmination of this career.

To my supervisor and friend PhD Myriam Hernández, for his support, help, patience

and valuable advice during the development of this work.

To my beloved daughters Aurita and Dianita, for being an important pillar in my life.

To my heavenly mother, for always being a guide to overcome adversity and to my

father for his unconditional support.

To my students Freddy and Ronny, my great work team, for their great effort and

support for the development of this work.

Thanks,

Juan Herrera

v

DEDICATION

I dedicate this work to my precious daughters, who are the engine of my life and the

reason for my improvement. Everything that is done with perseverance always leads

to success. I love you beautiful princesses.

Juan Herrera

vi

CONTENTS

ABSTRACT …………………………………………………………………………………….……. 1

PROLOGUE …………………………………………………………………………………………. 2

1. INTRODUCTION ... 4

1.1. Justification .. 4

1.2. Objectives .. 7

1.3. Hypotheses .. 9

2. BACKGROUND... 10

2.1. Ransomware History .. 10

2.2. Ransomware Taxonomy .. 14

Locker Ransomware ... 14

Crypto Ransomware .. 14

R4IoT .. 15

2.3. Stages of Ransomware Attacks ... 15

2.4. Ransomware Analysis .. 18

Static Analysis ... 18

Dynamic Analysis .. 18

2.5. Statistics of Ransomware Attacks .. 19

3. RELATED WORK .. 21

3.1. Current Research ... 23

3.2. Most used Features.. 27

3.3. Dataset Repositories for Benign and Ransomware Samples 32

3.4. Comparison with Previous Research ... 36

4. MATERIALS AND METHODS ... 38

4.1. Cuckoo Sandbox .. 38

4.2. Feature Extraction Tool .. 39

4.4. Phases of Experimentation .. 43

Phases Initial and Analysis .. 47

Phase Final – Selected Features .. 50

4.5. Test Setting .. 54

Phases Previous, Initial and Analysis .. 54

Phase Final ... 61

4.6. Balanced Dataset ... 65

vii

4.7. Machine Learning Algorithms ... 66

Model Generation with Machine Learning Algorithms ... 67

Machine Learning Parameters for Phase Final .. 68

Random Forest Parameters .. 68

Gradient Boosted Regression Trees Parameters .. 69

Gaussian Naive Bayes Parameters ... 70

Neural Networks Parameters .. 70

Performance of the Classifiers .. 71

5. DATASET, MODELING, AND DEPLOYMENT .. 73

5.1. Evolution of the Research to Obtain the Ransomware Features Dataset 73

Experiments in Phases Initial and Analysis ... 76

Combination of Features ... 76

Comparison of testing results .. 80

5.2. Final Datasets of Features of Ransomware corresponding to Phase Final 88

Dataset Global from Phase Final ... 89

Modeling Results with the Dataset Global ... 91

Dataset Extract from Phase final ... 93

Modeling Results with the Dataset Extract .. 95

5.3. Deployment .. 96

Repository Content .. 99

6. DISCUSSION .. 101

6.1. Contributions of This Work ... 101

7. CONCLUSIONS .. 103

8. FUTURE WORK.. 106

REFERENCES ... 107

ANNEXES .. 121

viii

INDEX OF FIGURES

Figure 1. Ransomware detection scheme .. 8

Figure 2. Ransomware by Emotet Infection .. 10

Figure 3. Timeline of the evolution of ransomware ... 13

Figure 4. A cycle of a ransomware attack ... 16

Figure 5. MITRE ATT&CK Matrix for Ransomware. ... 17

Figure 6. Industries attacked by Ransomware during Q2 2021 .. 20

Figure 7. Most common Ransomware Attack Vectors .. 20

Figure 8. General structure of the JSON reports .. 39

Figure 9. GUI components of the feature extraction application. .. 40

Figure 10. CSV file with extracted features ... 42

Figure 11. Test environment network topology for Phases Previous to Analysis 54

Figure 12. Features analyzed for the dataset using Cuckoo Sandbox in Phases Previous, Initial

and Analysis ... 57

Figure 13. Average characteristics ... 60

Figure 14. Features for Phase final that are automatically generated. 64

Figure 15. Final Test environment network topology used in Phase Final 65

Figure 16. Comparison of performance of the algorithms over the training dataset – Phase

Analysis .. 79

Figure 17. Comparison of performance of the algorithms over the testing dataset – Phase

Analysis .. 81

Figure 18. Dataset rows corresponding to an ‘UDP’ feature of an artifact. 90

Figure 19. Ten-fold cross-validation accuracy results obtained in Dataset Global from Phase

Final. .. 93

Figure 20. Information for a single artifact .. 94

Figure 21. Ten-fold cross-validation accuracy using the Dataset Extract from Phase Final. . 96

Figure 22. Deployment architecture .. 98

ix

INDEX OF TABLES

Table 1. Summary of current research (2016 – 2022). ... 23

Table 2. Summary of evaluated parameters and tools. .. 29

Table 3. Ransomware datasets (2020 -2022) ... 32

Table 4. Characteristics of dynamic analysis solutions ... 33

Table 5. Description of the experimental phases. ... 43

Table 6. Feature description ... 44

Table 7. Description of dataset column (features Phase initial and analysis)........................ 48

Table 8. Description of the dataset features for Phase final. ... 50

Table 9. Datasets description ... 53

Table 10. Artifacts for Datasets in Phases Initial and Analysis ... 55

Table 11. Selected characteristics Phases Initial and Analysis ... 58

Table 12. Artifacts used in Phase final.. 61

Table 13. Machine learning algorithms ... 66

Table 14. Relevant attributes of the datasets generated in each phase using specific artifacts

and platforms .. 73

Table 15. Processing times for a combination of 7 characteristics.. 76

Table 16. Processing times for a combination of 14 characteristics 77

Table 17. Processing times for a combination of 5 characteristics.. 77

Table 18. Nomenclature for the combination of characteristics .. 78

Table 19. Comparison of performances with different algorithms in the training dataset 79

Table 20. Comparison of performance of the algorithms over the testing dataset 80

Table 21. Performance of the classifiers using five features over the training dataset 81

Table 22. Performance of the classifiers using five features over the testing dataset 81

Table 23. Performance of the classifiers using a combination of four features in training and

testing ... 82

Table 24. Performance of the classifiers using a combination of three features in training and

testing ... 83

Table 25. Performance of the classifier using a combination of two features in training and

testing ... 83

Table 26. Performance of the classifiers using one feature in training and testing 84

Table 27. Best accuracy in training (Phase initial) .. 85

Table 28. Best accuracy in testing (Phase initial) ... 85

x

Table 29. Best accuracy in training (Phase analysis) ... 86

Table 30. Best accuracy in testing (Phase analysis) ... 87

Table 31. Training and testing classification reports ... 87

Table 32. Performance results for Dataset Global from Phase Final 92

Table 33. Performance of the classifiers using Dataset Extract for Phase Final 95

1

ABSTRACT

Ransomware-related cyber-attacks have been on the rise over the last decade, disturbing

organizations considerably. Developing new and better ways to detect this type of malware

is necessary. This research applies dynamic analysis and machine learning to identify the

ever-evolving ransomware signatures using selected dynamic features. Since most of the

attributes are shared by diverse ransomware-affected samples, our study can be used for

detecting current and even new variants of the threat.

This research has the following objectives: (1) Execute experiments with encryptor and

locker ransomware combined with goodware to generate JSON files with dynamic

parameters using a sandbox. (2) Analyze and select the most relevant and non-redundant

dynamic features for identifying encryptor and locker ransomware from goodware. (3)

Generate and make public a dynamic features dataset that includes these selected

parameters for samples of different artifacts. (4) Apply the dynamic feature dataset to obtain

models with machine learning algorithms. Five platforms, 20 ransomware, and 20

goodware artifacts were evaluated. The final feature dataset is composed of 2000 registers

of 50 characteristics each. This dataset allows for a machine learning detection with a 10-

fold cross-evaluation with an average accuracy superior to 0.99 for gradient boosted

regression trees, random forest, and neural networks.

As a complementary tool, the present study developed an application for extracting

information from the dynamic analysis of artifacts generated in a sandbox. Additionally, a

client-server architecture was established for deployment and application in the protection

stage. The models´ performance were evaluated with the new test data to simulate this

early protection phase for deployment. The obtained results were very satisfactory.

INDEX TERMS Classification, Dataset, dynamic, analysis, Encryptor, features, Locker,

Machine Learning, Ransomware

2

PROLOGUE

The present work contributes to the knowledge of some still open issues about ransomware

detection using cognitive security. One of these issues is the necessity of a dataset

containing dynamic features corresponding to all the ransomware attack patterns that could

be used to train supervised algorithms and neural network models. This dynamic feature

dataset should include all the relevant attributes related to the threat’s behavior and be open

to supporting the development of new machine learning ransomware detection solutions.

Our work aims in this direction.

The author has generated a dataset comprising the dynamic features of locker and

encryptor ransomware and characteristics extracted from goodware. The features were

selected with the criteria that they must be related to the effects of ransomware. The

literature found that a ransomware dataset with these characteristics was needed because

the ones that are publicly accessible do not have dynamic features of the artifacts; it is

characteristics that are extracted when the software is executed. Still, only fixed signatures

or their results are challenging to replicate or use for lack of enough descriptive information.

Dynamic analysis is essential for ransomware detection because the run-time attributes

have enough information for machine learning early detection of these threats. In our study,

since most of these features are shared by diverse ransomware samples, our dynamic

analysis can be used even for detecting new variants. The characteristics were selected

using criteria related to the role of each attribute in the ransomware attacks and the results

of experimentation with machine learning algorithms aiming to obtain the best

performances. For better classification results that even detect variants not included in the

training set, it is necessary to use a more complete description of the ransomware activities

delineated by the presence of all the relevant dynamic features.

To develop the final feature dataset, this research has used three classes of classifiers:

locker ransomware, encrypting ransomware, and goodware. Using our dynamic feature

extraction tool, the features were tested, and 50 characteristics were selected because they

comply with criteria related to ransomware attacks. They were also checked for low pairwise

correlation to avoid redundant information, and the machine learning algorithms'

performance was high. The researchers used 20 ransomware artifacts and 20 goodware

3

families tested with ten experiments, each over five platforms, to produce a dataset with

1’424.344 rows. For this dataset, there were several rows corresponding to one JSON. The

best performance results were obtained with gradient boosted regression trees with values

of 0.98 for 10-fold cross-evaluation accuracy.

To generate a more portable, efficient, and concise dataset without losing relevant

information, the research developed a process for synthesizing all the rows corresponding

to one JSON into one row. Using the information provided for the previous repository, the

study obtained a second dataset with 2000 records corresponding to forty families and ten

experiments for each artifact over five platforms. Using this dataset, performance results for

our models improved even more for gradient boosted regression trees, random forest, and

neural networks because they reached values close to perfect detection for ransomware.

In the deployment, predicting new artifacts requires applying the generated models, whether

in the repository or not. The programs developed in this research allow for changing the

directories of CSV JSON files and models to readily execute them in the production stage.

Those, as mentioned above, are the scientific contributions of the present doctoral thesis.

4

1. INTRODUCTION

The inner workings of the phenomenon known as ransomware is no longer a motley army

of scammers. Its growing impact is now powered by dedicated teams working within an

organized business framework. The US government manages a portfolio of risks that no

corporation can imagine. Some risks are easy to guess, for example, a terrorist attack or a

financial crisis; then, there is a whole new category based on cyber terrorism. In recent

years in the United States, the two most remote and unexpected events were an airborne

virus that claimed hundreds of thousands of lives and a random series of cyberattacks that

left the country without access to vital services. The US government openly confessed that

it had not kept up with the world. They have spent too long baffled that such attacks were

no longer hypothetical. They had become something real. Cyber warfare has become a

great leveler on the international stage. It represents an opportunity for non-state actors to

give blood to any superpower; it is understandable that large corporations, like Apple, were

left shaking with their intellectual property and customers now fully exposed, and it turns out

that very few of them wanted to talk about it for fear that the acknowledgment of the risk

would be an open invitation to be hacked.

Because of the amount of sensitive information stored on both devices and the cloud while

transferring over the network, malware detection, especially ransomware, has become a

primary research topic in recent years. A ransomware-like attack uses a set of stages to

infect a system; it starts with the device's distribution and infection. This malware searches

for files to infect. It encrypts files, requests ransom, and threatens exposure to the affected

company's sensitive information in case of non-payment.

Ransomware malware continues to grow and transform; it took advantage of the anonymity

provided by the growing popularity of cryptocurrencies. The researchers observed the

emergence of numerous variants after 2013. After the switch to crypto-ransomware,

ransomware continued to evolve, adding features like countdown timers, ransom amounts

that increase over time, and infection routines that allow it to spread through networks and

servers.

1.1. Justification

5

Cybercrime activities have grown significantly in recent years by compromising device

security and jeopardizing regular business affairs. The profits obtained through intimidation

and limitations for tracking illegal transactions have created a lucrative business based on

hijacking users' files. In this context, ransomware takes advantage of cryptography to

compromise user information or deny access to the operating system. Then, the attacker

extorts the victim to pay a ransom to regain access, recover data, or keep the information

private.

As of 2017, this threat had attacked hundreds of thousands of computers. According to the

US Department of Justice, more than 4,000 attacks have been reported per day1. The

situation is aggravated by the development of IoT technology that allows the availability of

new devices on the Internet with open access and the continuous emergence of new

variants of this virus.

The idea that a company's data is encrypted and copied is insidious. However, no

organization should allow ignorance and grievance to drive policy. So it is time to rectify

misconceptions about one of today's most fascinating and alarming corporate threats; that

critical gap at the heart of the cyberattack came back to work when the company paid

hackers millions in Ransom on May 7, 2019. A large part of the colonial oil pipeline from

Texas to New York City was closed in 2021. The wall between essential and non-essential

had been breached. The FBI had not seen the attack coming and, as the operator put it,

after paying Ransom's price of $4.4 million.

Ransomware operators have business models and are no longer content to only target

people who earn just a few dollars. At the same time, they have become an entity that, even

with only moderate cyber warfare capabilities, could attack a country like the United States

with a little more organization. By extension, the malware could also stop air traffic in Paris

and eventually bring Philadelphia trains to a standstill. They picked a Texas pipeline that

crippled South Carolina. The first real modern ransomware program dates back to 2005

with the release of the pgp encoder. Victims would visit an infected website that would take

advantage of inherent flaws within browsers. Then, ransomware progressed, switched from

symmetric to asymmetric encryption, and further thwarted the security industry's efforts to

1 https://www.hhs.gov/sites/default/files/RansomwareFactSheet.pdf

6

create practical decryption tools. The monetization strategy is also changing, with

cryptocurrencies replacing other more traceable methods.

Attackers exploited web and file servers and were deliberately positioned with public sector

organizations in mind. Furthermore, no one rushed to calculate the financial risks because

no one dared to make the assessment. It is as if you needed to set up an entirely new

department to combat attacks or find a security guru who knew how to respond to various

attacks.

The city of Atlanta has also dealt with major cyber-attacks. Hackers froze computer systems

and demanded payment, and in a Tweet, the city said the cause of the attack was after the

Sam Sam outbreak in 2018, the city of Atlanta faced a $51,000 demand for unlocking all

computers. After accounting for outage and remediation expenses, the final Ransom Bill

exceeds $2.6 million. Thus, we come to the latest generation with ransomware operators

adopting a franchise model2.

Managing risk is an act of the imagination, and government officials and businesses are

somewhat good at responding to a crisis and less good at taking action to prevent it in the

first place. Every measure today has to do with progress, the progress of society, and the

economy. The ransomware attack can be a big shock.

Ransomware attacks have become a serious threat to information security globally, so the

scientific community does constant research to detect and prevent such attacks. Despite

these efforts, ransomware continues to be prevalent worldwide because antivirus and anti-

malware cannot recognize them because they use polymorphism and machine learning to

avoid their recognition. On the other hand, exploit kits have appeared that efficiently

produce new ransomware variants, which are sold on sale and with discounts so that

anyone can develop this malware. Our research develops a strategy with the same type of

weapons with which this malware is presented; machine learning is used to detect the threat

before it can hijack and encrypt the data.

2 https://www.nytimes.com/2018/03/27/us/cyberattack-atlanta-ransomware.html

7

1.2. Objectives

The literature study found that there are no readily available public databases with dynamic

information on this type of attack, or the existing data are challenging to use because they

are not described in enough detail. In this context, this work proposes to create a dataset

with all the information necessary for its use; this dataset will be publicly available. We will

also indicate the parameters that have been selected as features. In our dataset, an analysis

of selected characteristics is presented.

Our research aims to create a dataset that associates the ransomware samples used with

the most distinctive dynamic virus features to detect them before the attack does its

damage. This work presents this material to make it available to the scientific community

and thus contribute to advancing the fight against this computer threat. The dataset will be

used to create models that allow early detection of the virus and achieve a proactive

response that minimizes the damage this malware can cause.

The parameters involved in creating the dataset are based on Cuckoo reports, considering

326 features. This information creates a Ransomware Feature Dataset. Ransomware

encrypts the files of its victims' computers for a short time to hijack the information and ask

for a ransom. Standard methods of discovering the malware's signature do not work

because the virus has a continuous evolution, making detecting this virus's action difficult.

Therefore, new protection mechanisms must focus on ransomware's operations before

encrypting files.

The goal of our work, through our dataset, is to analyze the virus's behavior using machine

learning algorithms, as shown in Figure 1. In the first step, we generate a feature vector that

provides justified, meaningful, and relevant information about the threat. This feature vector

will feed classifiers to obtain models for early risk detection. The dataset produced in this

study defines the feature vector composed of relevant characteristics, tests the models, and

specifies those that perform best.

8

Figure 1. Ransomware detection scheme

The present research has the following objectives:

1) Execute experiments with goodware, encryptor ransomware, and locker ransomware

to generate JSON files with parameters that characterize the artifacts. For this

purpose, we use simulations in an isolated environment with tools like Cuckoo

Sandbox.

2) Analyze and select the most relevant parameters for identifying encryptor and locker

ransomware from goodware.

3) Generate a dataset that includes these selected parameters for samples of different

artifacts.

4) Apply the dataset to the generation of models obtained with machine learning

algorithms to detect encryptor and locker ransomware using different combinations of

features to determine the selection of parameters that gives the best algorithm

performance. These models will allow the ransomware to be detected before the

information is encrypted and hijacked.

5) Make this dataset publicly available to contribute to advancing the fight against this

malware.

9

1.3. Hypotheses

Our hypotheses are:

 It is possible to build a dataset containing encryptor and locker ransomware and

goodware dynamic features corresponding to several artifacts in specific platforms.

 The features will deliver enough information to produce machine learning models to

detect encryptor and locker ransomware, with performance over the state-of-the-art

values, and their deployment will allow early detection of ransomware to minimize

the damage it can cause.

The present document consists of six sections. The first one is this introduction. Section 2

gives context to the problem; this chapter includes a description of the ransomware

evolution, the attack cycle, statistics, and the definition of concepts in this topic. Section 3

is about related work, describing current research, most used features, and datasets.

Section 4 describes the materials and methods used in our work. Section 5 presents the

generated dataset, the modeling using the selected parameters as input to machine

learning algorithms to classify goodware, encryptor, and locker ransomware and their

respective results. In this chapter, it is also presented a deployment of the best models.

Finally, section 6 exposes the study's conclusions.

10

2. BACKGROUND

In this section, we cover a history of the evolution of ransomware from its origins until date,

a definition of the taxonomy of this threat, the stages of the attacks, and the types of

ransomware analysis.

2.1. Ransomware History

For context, we start explaining the process of one possible infection channel: Emotet3

infection. The virus may arrive through a script, document files with macros, or a malicious

link. The process is described in Figure 2, which starts with the infection, then affects the

system logs (establishes persistence) and proceeds to establish a connection with the C&C

servers to receive instructions (instruction phase), after which it spreads by Network-wide

infection affecting victims with ransomware (network spread). (Fig. 2).

Author: Juan A. Herrera Silva

Figure 2. Ransomware by Emotet Infection

Like any threat, ransomware is in continuous evolution. Like most malware, its goal is not

to be detected or generate the most significant possible impact on infrastructure. Today,

people are not only talking about cyber criminals demanding money but about threat actors

3 https://devel.group/blog/todo-lo-que-necesitas-saber-sobre-emotet-en-2022/

11

(ATP - Persistent Advanced Threat), who can encrypt information and enter a system to

perform espionage, capture sensitive information, or gain access to inside information.

Depending on the actor, an attack can use different techniques to enter the network.

Methods include exploiting a vulnerability in a system exposed to the Internet using tools

and tactics to infiltrate systems and networks such as: phishing, external remote services

(VPN Virtual Private Networks, RDP Remote Desktop Protocol) or Zero-Day Exploitation,

and infection of some trusted websites operated by members of an organization, among

other techniques.

Consequently, with that purpose, the attacker has a wide range of malware on the black

market. One such service is currently provided by the Emotet malware, which was initially

known as a banking Trojan. For its polymorphic versatility and ability to reach the end-user

in a more friendly way, via e-mail, an Office-type document, or some JavaScript file. It can

be downloaded from Internet repositories. In this way, attackers use Emotet as a dropper;

a Trojan is used to install other types of malware on the operating system. Figure 2 explains

the process of ransomware by Emotet infection.

Big Game Hunting is on the rise. More groups are distributing ransomware and

ransomware-as-a-Service (RaaS). They are focusing their attacks on extensive enterprise

networks rather than individuals. Big Game Hunters frequently use different trojans to gain

an initial foothold in the target network. In 2020 the scientists saw Ryuk operators employ

Emotet and Trickbot4. This trend shows that phishing e-mails are still the most common

technique used for initial access.

Some groups that used simple Remote Desktop Protocol (RDP) brute force as an initial

access technique did not even have ransomware in their arsenals and used a legitimate

encryption tool instead. Simultaneously, even some of the most advanced Big Game

Hunters employed this initial access vector in some cases. Cerber, as an evolved

ransomware technology, statistically surpassed the number of ransomware detected in the

Asian region in 2019. WannaCry ranks first globally in 2020 and continues to pose a threat

after its rapid expansion in 2017 [1].

4 https://www.bankinfosecurity.com/emotet-ryuk-trickbot-loader-ransomware-banker-trifecta-a-
14126

12

According to The State of Ransomware of Sophos 20205, attacks have skyrocketed since

the big transition to remote work. Not only are attacks increasing, but they are also more

sophisticated and dangerous. Ransomware attacked 51% of the organizations in the last

year. The criminals managed to encrypt the data in 73% of these attacks, and 59% of

attacks encrypted detailed data in the public cloud, which became the most successful

ransomware attack in cybercrime. EvilQuest affected Mac operating systems (June 2020).

This threat is more present than ever; it has not stopped even during pandemics. Therefore,

it requires contributions that allow us to destroy this malware finally.

There were 623.3 million ransomware attacks worldwide in 2021 and 304.6 million

detected attacks in 2020. Between 2020 and Q2 2022, the volume of ransomware

attacks peaked in Q2 2021 with 188.9 million attacks. The 5 most representative

ransomware families in 2021 were: Stop with 51%, Revil with 34%, Cerber with 4%, Conti

with 2%, Darkside with 1%. Others with 8%6.

Figure 3 presents a timeline of the most representative changes in ransomware families

and its evolution, from its appearance in 1989 to 2022. The first ransomware appeared in

1989 as AIDS since 1989, then new families have appeared such as Blockers, encryptors,

ransomware as a service and extortionists who publish the kidnapped information of clients,

exposing the reputation of those affected. Nowadays, they also act as denial of service over

the network. Major ransomware has appeared affecting Windows operating systems such

as Wanna Cry, but also affecting Linux systems such as Ransom X and EvilQuest for

Macintosh systems. It should be mentioned that there are several ransomware that continue

to affect systems today, despite the fact that they came out in previous years, such as:

Cerber, Stop and Revil.

5 https://news.sophos.com/en-us/2020/05/12/the-state-of-ransomware-2020/
6 https://www.antivirusguide.com/cybersecurity/ransomware-statistics/?gclid=CjwKCAjwq-
WgBhBMEiwAzKSH6MbtY3_fLUDo8CVnDWTblLKf7g25wev2QEMizoxgS-
S1A18BmFeQIBoCZD4QAvD_BwE

13

Figure 3. Timeline of the evolution of ransomware

14

The Ransomware selected for the construction of the final Dataset and the experimentation

with learning models is highlighted in yellow and those related to detection with deployment

are highlighted in green in Fig.3. Ransomware has evolved, and it is increasingly

dangerous. Nowadays, there are more forms of extortion. The attackers not only hold data

hostage and ask for ransom but also extort with the threat of publishing the sequestered

data.

For this, REvil and others also offer a service where customers, partners, and the press are

called to spread confidential information if the ransom is not paid. Furthermore, the gangs

may carry out a DDoS attack to shut down companies’ servers to keep the victim

uncommunicated. The ransomware variant Yanluowang adds a new threat: the repetition

of the attack in a few weeks, deleting all the data.

2.2. Ransomware Taxonomy

Ransomware can be classified according to the kind of victim it tries to affect, the method

of infection, the mode of communication with the command-and-control server, and the type

of malicious activity it performs on a computer asset [2]. For the development of our

research, we focus on this last type of classification. There are two families of ransomware

depending on the type of activity carried out on computer assets:

Locker Ransomware

This family blocks access to the computer system to close access to its users until they pay

a sum of money [2], [3], [4]. The threat posed by this type of ransomware depends on the

lock it implements. Some examples only block access to the graphical interface, which

makes them less effective, while others act directly on the Master Boot Record of a system,

which makes it much more dangerous [4].

Crypto Ransomware

This type encrypts files found within a computer system, rendering them completely

unusable and inaccessible until a sum of money is paid [2], [3], [4], [5]. This type of

ransomware represents a higher threat than the Locker family since the infected files remain

completely inaccessible even if the ransomware is removed from the computer system [3].

Examples of this type of malware use symmetric, asymmetric, and hybrid encryption

techniques to encrypt files and protect the cryptographic keys [4]. Some variants steal the

15

information hosted on a system and threaten the affected parties with the publication or sale

of the information in case the demanded money is not paid [6].

R4IoT

It is a ransomware variation that demonstrates how Internet of Things (IoT) and Operational

Technology (OT) exploits can be combined with a traditional ransomware campaign. It also

indicates that mitigating these attacks requires solutions that enable complete visibility and

greater control of all network assets7.

This ransomware maps the different machines on the network and uses the password

hashing of the administrator account and the Windows Management Instrumentation (WMI)

functionality used to manage the devices and applications in a network from Windows. The

virus disables Windows Firewall and Windows Defender and drops other R4IoT executables

(a cryptocurrency miner and memory executable that will launch denial of service attacks

against critical IoT/OT assets). A modified version provides Command-and-Control (C&C)

server/agent functionality. It is a computer-controlled by the attacker that sends commands

to the victim’s system to obtain stolen data. At the request of the C&C server, the C&C agent

can encrypt or decrypt files on the infected machine, exfiltrate files and launch arbitrary

executables with administrator privileges.

This ransomware could attack Programmable Logic Controllers (PLCs), i.e., computers

used to automate industrial electromechanical processes; this would have an immediate

and difficult to mitigate effect. Since PLCs are rarely exposed to the outside world, it would

be an internal DoS attack. Attacking PLCs could stop critical parts of business operations,

be it a conveyor belt or an infusion pump. R4IoT is not a new malware development; it uses

existing exploits. More worryingly, the Proof of Concept could be used by less sophisticated

cybercriminals using Ransomware-as-a-Service (RaaS).

2.3. Stages of Ransomware Attacks

When a ransomware attack is accomplished, the following processes are carried out:

contagion, spread, action, and warning, as shown in Figure 4. In encryption ransomware,

the following phases are considered: distribution, infection, communication, file search,

7 https://unaaldia.hispasec.com/2022/06/r4iot-el-futuro-del-ransomware-ya-esta-aqui.html

16

encryption, blocking, and ransom request. For blocking ransomware, only access to the

computer is blocked [7].

Figure 4. A cycle of a ransomware attack

In the latest methods used by the Ransomware groups [8], the researchers examined the

most effective 2020 campaigns. The matrix, MITRE ATT&CK [8], is shown in Figure 5. It

details their most common (highlighted in red) and also less used (highlighted in green)

tactics, techniques, and procedures (TTP s). This threat uses remote access and attacks

via phishing with attached files in the initial entry, then it executes commands (Power Shell),

set persistence (affecting the registry), scales privileges (accesses), and applies defensive

evasion techniques. Besides, ransomware does network scans with lateral infection

movements, taking control and command for transferring hijacked files to the cloud, and

concludes with data encryption to end inhibiting the system.

17

Figure 5. MITRE ATT&CK Matrix for Ransomware.

Initial Access Execution Persistence Privilege

Escalation

Defense Evasion Credential

Access

Discovery Lateral

Movement

Collection Command and

Control

Exfiltration Impact

Drive-by

Compromise

(T1189)

User Execution

(T1204)

Registry Run Keys /

Startup Folder

(T1060)

Valid Accounts

(T1078)

Disabling Security

Tools

(T1089)

Brute Force

(T1110)

Network Service

Scanning

(T1046)

Remote Desktop

Protocol

(T1046)

Data from Local

System

(T1005)

Remote Access

Tools

(T1219)

Transfer Data

Cloud Account

(T1537)

Data Encrypted for

Impact

(T1486)

External Remote

Services

(T1133)

PowerShell

(T1086)

External Remote

Services

(T1133)

Exploitantion for

Privilege Escalation

(T1068)

Group Policy

Modification

(T1484)

Credential

Dumping

(T1003)

Network Share

Discovery

(T1135)

Windows Admin

Shares

(T1077)

Data from Network

Shared Drive

(T1039)

Remote File Copy

(T1105)

Exfiltration over

Other Network

Medium

(T1011)

Inhibit System

Recovery

(T1490)

Spearphisihing

Attachment

(T1193)

Command-Line

Interface

(T1059)

Create Account

(T1136)

Redundant Access

(T1108)

Credentials in files

(T1081)

Remote System

Discovery

(T1018)

Windows Remote

Management

(T1028)

Multi-hop Proxy

(T1188)

Data Encrypted

(T1022)

Resource Hijacking

(T1496)

Spearphisihing

Link

(T1192)

Scripting

(T1064)

Scheduled Task

(T1053)

Masquerading

(T1036)

Credentials from

Web Browsers

(T1503)

System

Information

Discovery

(T1082)

Exfiltration over

Command an

Control Channel

(T1041)

Valid Accounts

(T1078)

Windows

Management

Instrumentation

(T1047)

Valid Accounts

(T1078)

Bypass User

Account Control

(T1088)

Permission Groups

Discovery

(T1069)

Suply Change

Compromise

(T1195)

Explotation for

Client Execution

(T1203)

New Service

(T1050)

NTFS Flile Attibutes

(T1096)

Password Policy

Discovery

(T1201)

Trusted

Relationship

(T1199)

Mstha (Mstha) Modify Existing

Service

(T1031)

Obfuscated Files or

Information

(T1027)

Domain Trust

Discovery

(T1482)

Exploit Public-

Facing Application

(T1190)

Scheduled Task

(T1053)

WMI Event

Suscription

(T1084)

Deobfuscate/Deco

de Files or

Information

(T1140)

Network

Configuration

(T1016)

File and Directory

Permissions

Modification

(T1222)

File Deletion

(T1107)

18

2.4. Ransomware Analysis

In general, malware analysis is studying, observing, and dissecting malicious software to

determine its purpose, origin, and functionality [9], [10]. The analysis of this type of software

is necessary to develop techniques that facilitate the detection of malware and tools that

allow it to be counteracted [9]. The analysis could be classified as static or dynamic.

Static Analysis

This analysis focuses on studying a malicious software artifact without running it [9], [10].

Within a basic static analysis process, several activities are carried out, such as evaluating

the software artifact in question within various antiviruses, searching within a binary file for

readable text strings, and examining the artifact's metadata, among others.

One of the advantages of using this type of analysis is that it allows an in-depth view of the

content and behavior of an artifact. However, some disadvantages can make it difficult to

carry out this type of analysis, such as code obfuscation by malware authors or if the artifact

in question uses self-modifying code techniques [9]. Some of the methods used in this type

of analysis are:

Disassembly: It consists on using tools that allow reverse engineering to be carried out on

the device in question [10]. With this technique, the intention is to obtain the instructions of

the malware in assembly language from the machine code that contains the malicious

software to analyze the instructions and determine the behavior of the artifact [9].

Information Extraction: Consists on extracting the information embedded in the malicious

artifact without necessarily doing reverse engineering. This process includes removing

readable text strings within the artifact or searching for information based on the file

extension [9].

Use of antivirus: It simply passes the malicious artifact through several antiviruses from

different providers [9], [11].

Dynamic Analysis

The dynamic analysis focuses on executing the malicious artifact within a controlled

environment. This execution allows to observe and monitor the behavior of the malware in

the controlled environment and determine the changes it has made on it [9], [10], [11]. Since

19

a malicious artifact is going to be executed in this analysis, it is necessary to have a

controlled and safe environment to be able to guarantee that, after executing it,

counterproductive results are not obtained, such as the infection of neighboring networks

or the infection of the computer that is running the malware. For this purpose, simulators,

emulators, or sandboxing are used [11]. In this way, the dynamic analysis seeks to obtain

some information on the execution of the artifact in question, such as:

• System calls.

• Modified system registries.

• Files created, modified, or deleted.

• Network connections established.

• Network protocols used.

• Modifications to the file system.

Our research focuses on the dynamic analysis of ransomware using a sandbox to obtain

information on ransomware behavior and goodware software artifacts to conduct dynamic

analysis using a cuckoo tool. In addition, the authors describe a feature extraction program

developed for this purpose. During execution, the artifacts yielded 326 dynamic features

that describe what the artifact does while running inside an isolated operating system. Some

of these features are related to ransomware activities and are pertinent for detecting this

malware using machine learning techniques. The researchers analyzed ransomware

behavior and chose 50 relevant and not redundant features to feed the learning algorithms

to produce an accurate classification.

2.5. Statistics of Ransomware Attacks

In this section, we present some statistics demonstrating the severity of the problem created

by the ransomware gangs. The attacks are rising and increased by 140% in Q3 of 20218.

Figure 6 shows the common industries targeted by ransomware in the second quarter of

2021. The public sector is the most affected, and nearly one in four local government

organizations admitted to having no malware recovery plan in place in the 2021 Sophos

survey [12]. This sector is most likely to see encrypted data and pay the extortions.

8 https://www.pandasecurity.com/en/mediacenter/security/ransomware-statistics/

20

Figure 6. Industries attacked by Ransomware during Q2 2021

Figure 7 shows that in the second quarter of 2021, Remote Desktop Protocol (RDP) and

Email phishing are the most common attack vectors [12].

Figure 7. Most common Ransomware Attack Vectors

Since this problem is growing and has lethal effects on its victims, it is vital to develop a

timely detection of this threat before it produces irreparable losses. From the review of

related work detailed in chapter 3 of this thesis, we could detect that very few studies focus

on dynamic analysis. Our research aims to cover this gap in diverse platforms.

21

3. RELATED WORK

The work on situational awareness of ransomware attacks [13] identifies parameters for

detecting and preventing this attack. Besides, it presents a variety of ransomware analysis

tools, including Anubis [14], VirusShare [15], VirusTotal [16], Process Monitor [17],

Watchdog Module [18], and mainly Cuckoo Sandbox ([14], [16], [17], [19], [20], [21]).

Similarly, in [22], analysis is performed on a set of parameters related to ransomware

attacks. The most commonly used metrics are convergence region (ROC) against file

encryption, CPU utilization, valid positive rate (TPR), false-positive rate (FPR), accuracy,

and recovery. On the other hand, according to the RWGuard system [23], the parameters

that can influence the detection of ransomware are required packets of input and output,

behavior, and CPU processing.

There are different approaches to the detection and prevention levels of such attacks.

Discovery-level investigations mention the main parameters such as registry keys, system

file input/output activities, process activity, entropy, API function calls [24], network activity,

and network features (protocol, source, destination IP addresses, ports, packets, duration).

In [15], the authors present a dataset with the following parameters: Windows API calls,

registry key operations, system file operations, file operations performance set by file

extension, directory operations, deleted files, and character strings. Nevertheless, it

indicates that many samples used are not reflected in the dataset; there is a lack of

explanation of the parameters and identifiers' description, and they do not justify why they

consider them. Thus, studies that generate datasets provide only an overview of the

parameters used in the ransomware attack detection process; they do not delve into their

importance and are also not available to the scientific community.

Several pieces of research talk about how to scan and detect ransomware, authors in [25]

propose a technique to monitor network traffic data and extract its features. These features

are used in ransomware classification, and the applied algorithm is the Random Forest

binary classifier. It indicates a detection rate of 86%.

On the other hand, data mining techniques are used in [26] to find unique association rules

for recognizing and detecting ransomware families using a static and dynamic approach. In

[21], the authors have proposed ransomware detection when making API calls.

Ransomware samples run in an isolated environment to get the API call information to

22

create a feature database. Sample classification is performed using support vector

machines. In [27], a network traffic scan has been performed for Windows ransomware.

This network analysis is conversation-based, and detection accuracy is calculated using the

J48 algorithm, a decision tree classifier.

In [17], a method has been introduced to detect ransomware on virtual servers. Volatile

memory dumps obtained from forensic memory analyses are analyzed to create meta

characteristics. The experiment was conducted using the Volatility Foundation and Random

Forest Classifier as a machine learning model. According to [28], a static analysis-based

approach to classify ransomware is proposed. Through inter-family discrimination, it obtains

feature vectors and feeds them five machine learning methods for ransomware

classification. The experiments achieve a binary classification accuracy of 91.4%, and this

method can take fingerprints of the environment, which are very difficult to detect with

automatic analysis.

Cuckoo sandbox is often used to isolate a working space for executing ransomware-

infected files. The research papers mentioned below present the best accuracy results. In

the article [29], the authors used sandboxing to obtain 64 features for 360 samples of

ransomware and 532 files with other malware, and 460 samples of benign software. It is a

somewhat limited dataset in terms of the number of samples. Using machine learning

algorithms and values corresponding to four large feature categories: function length

frequency, printable string information, and API functions, they got a maximum accuracy of

0.961. The drawback is that it is unclear which specific features inside these categories are

included in the training.

Aditionally, using the Cuckoo sandbox in [30], the authors used the file and encryption

features to compose a feature vector. This research achieves a 93% ransomware detection

rate; accuracy is not reported. Another example is [31]. This article presents feature vector

plots to distinguish a different behavior among ransomware and goodware families of

artifacts. [32] proposes an active learning algorithm to detect ransomware using selected

26 features, achieving a 0.879 accuracy value for ransomware detection. None of the

mentioned research papers present their datasets, which would help replicate their work.

As [33] states, the application of intelligent algorithms to detect ransomware is in an early

stage but is growing. New perspectives of future developments are still ahead in this

research area.

23

3.1. Current Research

The evolution and impact of ransomware attacks in the last decade have revealed the

imperative need to discover an efficient way to mitigate or avoid this threat [34]. In this

context, several studies and proposals that aid with this purpose are shown in Table 1.

Table 1. Summary of current research (2016 – 2022).

Reference Year
Keywords/Topics

Kind of Research

 Review Proposal Testing

[15] 2016 Detection, machine learning, Support Vector

Machine (SVM), regularized logistic regression

 X

[14] 2016 Ransomware evolution, datasets X X

[35] 2018 Ransomware economic impact, bitcoin trace X

[36] 2017 Economic analysis X

[37] 2017 Prevention, pattern, random forest, exploit kits,

supervised machine learning

 X

[38] 2016 Honeypot, detection X X

[39] 2017 C&C, IoT attacks X X

[40] 2018 Detection methods, Decision Tree Classifier X X

[41] 2018 API calls, detection X

[42] 2017 Detection, V-detector negative selection algorithm,

feature extraction

 X

[43] 2018 Detection, prevention, entropy information X

[44] 2018 Ransomware taxonomy, state of the art on

prevention, detection, and prediction.

X

[45] 2018 Unsupervised detection method, artificial neural

networks, Hardware Performance Counter (HPC).

 X

[46] 2018 Detection, honey file, protection X

[47] 2018 Detection, mitigation, Software Defined Networking

(SDN)

 X

[48] 2018 Detection mechanism X

[49] 2017 Analysis and detection, simple Logic (SP), SVM X

[50] 2017 Cryptoanalysis, detection X X

[51] 2017 Deep learning, Long-short term memory (LSTM) X

[52] 2018 Crypto model, encryption keys, proactive prevention X

[53] 2018 Dynamic analysis, anomaly detection, SVM X

[54] 2018 Backups, disaster recovery, risk assessment X

24

Reference Year
Keywords/Topics

Kind of Research

 Review Proposal Testing

[55] 2017 Deep networks, detection X

[56] 2017 Recurrent neural network (RNN), detection X

[57] 2018 Mitigation, detection X X

[58] 2017 Ransomware evolution, safety measures X

[59] 2018 Detection, mitigation, SDN, NFVs X

[60] 2017 Crypto-Ransomware, bitcoin, Cyber currency X

[61] 2020 Static analysis, opcode, Machine learning X

[62] 2018 Security, model checking, android X

[63] 2018 Bitcoin, crypto-currency, payment X

[64] 2018 Volatile memory forensics memory dumps X

[65] 2019 Deep learning, convolutional neural network, LSTM X

[66] 2018 Remote Desktop Protocol (RDP), detection X

[67] 2018 Behavioral detection, anomaly X

[68] 2018 Detection, deception systems X

[69] 2018 Real time detection, access control, file operation X

[70] 2018 Encryptor, file protection, document editing X

[71] 2017 Cyber threats, security audit, penetration testing, IoT,

privacy

X

[72] 2021 Ransomware, sandbox, user-friendly model, survey X X

[73] 2020 Ransomware, Detection, Prevention X X

[74] 2021 Machine learning, Deep learning, Ransomware,

Ransomware analysis, Dynamic analysis;

 X X

[75] 2021 Intrusion detection systems, detection rate. false

alarms

X X

[105] 2022 Ransomware, Open dataset, Storage access pattern,

Machine learning, Hypervisor

 X X

[125] 2022 crypto ransomware, data centric, process centric,

event-based detection, early detection, Neural

Networks, malware, machine learning-based

detection

X

[126] 2022 Network function virtualization, enterprise information

system, IoT malware detection, adversarial malware,

detection malware, visualization techniques,

sandboxing

X X

[127] 2022 enterprise’s private cloud, virtual machines, RAM, file

system, network feature, feature selection

 X

25

Reference Year
Keywords/Topics

Kind of Research

 Review Proposal Testing

[128] 2022 ransomware detection, cloud environment, volatile

memory features, ransomware binaries and action

sequences

X X

[129] 2022 Ransomware Classification, Feature Selection,

Machine Learning, Neural Network, Cybersecurity

 X X

[130] 2022
machine learning, classification, ransomware,

random-forest, elbow method

 X X

Table 1 presents a summary of the different phases followed during an investigation. These

are the review of the state of the art, proposal, and testing. It also shows each paper's

keywords and central topics to facilitate future research. For instance, a ransomware

taxonomy and its success factors are presented in [34], [67].This state of the art is focused

on ransomware counteraction from the prevention approach and detection concept. It also

highlights the research direction in this field and its impact [71]. Some authors show

ransomware evolution, the most common infection, and payment methods [57], [58] They

also present the target users, safety measures, and the market model as a business. For

instance, a ransomware economic analysis is carried out in [35], [36] . In both approaches,

the economic impact of ransomware is reported. They also provide an analysis of the

payment strategies, such as bitcoins, and how they contribute to ransomware proliferation.

We applied ransomware detection and prevention methods in our work, such as sandbox

analysis and machine learning recognition. These kinds of approaches are detailed in [72],

[73], [74], [75], [105], [125], [126], [127], [128], [129], [130]. The principal idea is to use

the named methods to obtain a pattern that allows determining if an artifact is ransomware

using experimentation that was carried out in different phases.

A set of suggestions to enhance the information security risk assessment guidance,

specifically NIST SP 800, is given in [54].This study reviews the current backup approaches

to provide a guide to address ransomware attacks, according to NIST SP 800 security

management. On the other side, there are proposals focused on ransomware in Android

devices [14] or the IoT area [37]. For example, [39] propose a model for analyzing incoming

TCP/IP traffic (header) using a command and control server (C&C) with ransomware

26

blacklists. It is important to note that the analysis of ransomware threats in Android or IoT

devices is out of the scope of this article.

One of the most critical challenges is to provide enhanced mechanisms to predict

ransomware attacks before they happen and then apply countermeasures. On the one

hand, several articles show novel detection and prediction methods [34], [38], [39]. On the

other hand, some prevention mechanisms are presented to establish principles and

suggestions to avoid a ransomware attack or loss of information [46], [47], [52], [54]. In [52]

a key vault is proposed to protect and store the session keys. Furthermore, some proposals

allow the mitigation of ransomware attacks, such as the deployment of sensors and

actuators [59]. It considers the self-organized concept to provide a smart calibration and

management of responses. It also contemplates the situational awareness concept of

knowing the real situation of the protected environment.

It is important to highlight that big companies and organizations like the European

Commission are pushing research in information security through funded projects such as

RAMSES [76] or CYBECO [77]. On the one hand, Supporting Cyber insurance from a

Behavioral Choice Perspective (CYBECO) develops new tools and algorithms to build more

secure communication and network systems. It takes into account the behavior not only of

cyber attackers but also the owners of end devices or infrastructures. On the other hand,

an Internet Forensic platform for tracking the money flow of financially motivated malware

(RAMSES) facilitates digital forensic research to identify internet attackers or scams. For

this purpose, the RAMSES project correlates and analyzes data gathered from the Internet,

particularly malware attacks such as banking trojans or ransomware. As a result of this

preliminary analysis, different investigations introduce concepts like pattern recognition or

prediction techniques to facilitate preventive, reactive, and proactive responses to

ransomware attacks.

One of the main challenges of information security is to know what happens with the devices

connected in a system and their communications, and more importantly, how to prevent

and mitigate possible threats. All of these issues can be covered using a Ransomware

Situational Model. In this context, several parameters are considered in the current

research, such as file system operations, entropy, registry keys, checksum values, file

hashes, disk usage, and open connections. Table 2 shows a summary of different

parameters that were studied and evaluated in current research [13]. It also includes the

tools used not only to deploy a secure environment for testing purposes but also the

27

programs or approaches that facilitate the gathering, correlation, and analysis of the

information.

The analysis presented in Table 2 has revealed that the Cuckoo [78] sandbox is the

preferred tool for testing and evaluation. Cuckoo allows the deployment of a secure

environment for testing with different kinds of malware. Every action carried out by the

malware is stored (logs and reports) when an attack is simulated. One of the main

advantages of Cuckoo is that it works in an emulated environment which is safe for the

network. It is worth mentioning that ransomware samples can be obtained in VirusTotal,

VirusShare, or some authors generate or emulate their own ransomware [29].

3.2. Most used Features

In essence, to detect a ransomware attack, most of the authors take into account the

following features [13]:

Content similarity and entropy: for determining how similar the data is. Entropy is based

on the degree of randomness of the bytes in a file. Typical file types like HTML or doc have

a lower entropy value than binary files (exe, dll). Encryption typically produces a high

entropy. Therefore, if the file has been changed and is too different compared to the

expected average entropy, it can be considered a potential threat. It is important to note

that high entropy is not a conclusive parameter to predict ransomware attacks because

other normal processes like compression imply a high entropy value. Furthermore, newer

versions of ransomware reduce entropy; consequently, a lower value does not guarantee a

possible infection. Entropy can be used as a part of an attack vector to predict ransomware

threats.

Monitoring C&C Communications: In ransomware attacks, a C&C server propagates

instructions to infect or take control of devices called bots. In this context, monitoring

unusual or continuous communications with specific internet sites will be done. For this

purpose, researchers are using innovative technologies such as SDN to block

communication with the C&C server when it is happening. For instance, in [79] a system to

monitor suspicious network traffic is proposed. It blocks infected devices, in a real-time

manner, through rules applied by the SDN controller.

28

Moreover, concepts like Network Function Virtualization (NFV) mitigate this problem by

deploying specialized network functions like Deep Packet Inspectors (DDI) or honeypots.

Besides, Domain generation algorithms (DGA) generate a set of domain names used by

the C&C server and leave a trace in network traffic [80]. It is important to note that some

ransomware samples do not need an internet connection to encrypt files.

File system activity: Ransomware inevitably uses function calls (e.g., I/O Requests) to

execute malicious operations in the OS filesystem. The system under attack can exhibit an

abnormal file system activity since many equal file system access can be requested. The

main suspicious activities related to the file system can include changes in Master File Table

(MTF) and I/O Request Packets (IRP) [81]. The MTF can be encrypted during a ransomware

attack, and the Master Boot Record (MBR) is overwritten. Thus, monitoring these elements

is an effective strategy to detect ransomware.

Monitoring registry values: It has been observed that several registry values are modified

during a ransomware attack. For instance, many ransomware variants modify the values of

HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\N1s\ComputerName\Active

ComputerName and HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\

CurrentVersion \WinLogon, HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows

\CurrentVersion \Run.

Similarly, the value of HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\

Type 001 as the Microsoft Strong Cryptographic Provider is read [14].

Other variants remove the volume shadow copies (Volume Snapshot services VSS files) to

avoid using these backups to recover the system. Finally, ransomware opens a txt

instruction file, fills it with the image of attacker payment information, and changes the

desktop background to the bitmap image. In other words, the HKCU\Control Panel\Desktop\

Wallpaper value is set to %CSIDL_DESKTOPDIRECTORY%_Locky_recover_instructions

.bmp [70]. In the case of encryption ransomware, crypto libraries and registers are used or

accessed.

Privilege Escalation: It is considered one of the most distinctive features of ransomware

attacks. Once the malicious software is downloaded to the system, it monitors the

environment to check its access capabilities and, if necessary, asks for administrative rights.

This access request is externalized as an app authorization button in Android devices or a

malicious window requesting authorization in Windows elements (update patch). Once the

29

attack obtains administrator privileges, it continues the attack by locking the victim device

(Windows) or setting a new lock screen PIN (Android) [14].

Monitoring API and DLL calls: The use of APIs is one of the most common ways of

software development. A set of procedures, protocols, and tools is provided as logical

building blocks. The programmer puts the blocks together according to their particular

objective through API requests and API calls. Similarly, the attacker uses the available APIs

for executing malicious activities. Therefore, some characteristics of API calls (e.g., time,

type, number, sequence) can be used to model the application behavior. Then, a classifier

can be trained to detect suspicious activities. For example, a suspicious sequence in API

Windows uses GetThreadDesktop, CreateDesktopW, and SwitchDesktop [81]. Even

though the attacker could avoid using API calls, using native APIs requires significant work

due to a lack of compatibility and available documentation.

Modifications of Master Boot Record (MBR): A group of ransomware attacks is

specialized in changing the Master Boot Record, which contains the executable boot code

and the partition table. This attack takes advantage of the well-known position of the MBR

(first sector of a hard disk) and the startup procedure. Then the system boot process loads

the MBR instructions in memory and transfers them to the control system at boot time. In

this context, the malicious software modifies the boot code with a bogus MBR that blocks

the standard boot procedure and displays a message requesting a ransom.

Monitoring specific file type, file path, or directories: It includes monitoring file

modifications to find an unusual increase of particular extensions, such as .locky. It also

oversees the Volumen Shadow Copy service (VSC) to avoid that shadow copies of the

systems can be erased. Moreover, it is crucial to monitor URLs and web pages.

Table 2. Summary of evaluated parameters and tools.

Reference Year Evaluated Parameters Tools/Datasets

[15] 2016 API invocations, registry keys, file directory VirusShare, Cuckoo

sandbox,

 Operations, and dropped files. VirusTotal, Matlab

[14] 2016 Filesystem and registry in Windows; checking the PEiD, PEView tool,

Cuckoo,

 MD5 hash values from Virus, file system and Anubis

 register activity, network communications

30

Reference Year Evaluated Parameters Tools/Datasets

[38] 2016 Honeypot folder monitored with an FSRM File EventSentry, FSRM

 Screen

[48] 2016 The file path, time attributes, filesystem I/O activity Cuckoo, OpenSSL,

 VirusTotal

[37] 2017 Listing of the file path and dropped file, ransom Cuckoo, Wireshark,

 note, network activity, analyzing application tracewrangle3, Dionaea

 payload Honeypot

[39] 2017 C&C communication, public key, the connection Framework Proposal

 established between victims and the C&C server.

 [42] 2017 Hard disk reading and writing, the encryption and Cuckoo Sandbox, Volatility

 deletion of files, crypto APIs. Three types of

 features: API functions, behavioral expression

 (count IP address, ports, etc.) and memory

feature.

[49] 2017 API calls (GetModuleFileNameA,

NtCreateSection,

API Monitor tool, Weka

 NtCreateFile, NtMapViewOfSection, NtWriteFile)

[50] 2017 File system, registry, process activity, entropy, API Cuckoo, VirusTotal, Process

 functions (ReadFile, QueryInformation), Master Monitor

 File Tables, System Service Descriptor Table

[51] 2017 API calls, registry values Cuckoo Sandbox

[52] 2018 Crypto Function Hooking, CryptoAPI, File Cuckoo sandbox, Raddar,

 recovery, SHA1 functions VirusTotal

[55] 2017 121 API call functions (NtEnumerateValueKey, Cuckoo sandbox,

 NtOpenSection, closesocket, TensorFlow, Open Malware,

 CryptDecodeObjectEx, GetFileAttributesW) VirusTotal

[56] 2017 API call sequences (NtOpenFile,

RegOpenKeyExA,

Cuckoo sandbox, VirusTotal

 ioctlsocket, NtResumeThread, etc)

[40] 2018 Network features (Protocol, source, and destination Weka, Kali Linux

 address, ports, packets, duration)

[41]

2018 API calls (CopyFile, CreateDirectory), Windows Power Shell, bash

 InternetOpen, CryptoDeriveKey,

SetFileAttributes,

scripts, ProcMon

31

Reference Year Evaluated Parameters Tools/Datasets

 GetFileType, GetFileSize, CryptoGenKey,

 CryptoDecodeObject)

[43] 2018 The entropy value of the file was calculated (its Watchdog Module

 format)

[45] 2018 Cache-references, cache-misses, branch-misses

and

iperf tool, sandbox, Kera,

 branches.

[46] 2018 FIFO files, infinitive files Bash-ransomware, linux

 suite, linux encoder,

 OpenSSL

[47] 2018 HTTP message sequences and their

corresponding

Cuckoo, Alexa websites,

 sizes. POX

[53] 2018 API calls Cuckoo sandbox

[82] 2020 C&C commands, Permissions requested by

ransomware

Concurrency Workbench of

New Century

[83] 2021 C&C Communication, Recovery of Files via Cloud

Backup

[84] 2020 Infected Files Generate ransomware, Attack

ransomware on _le or

directory, Verify encryption by

ransomware

[85] 2020 “Windows API calls, Windows

Cryptographic APIs, Registry Key”

Machine Learning

[128] 2022 Ransomware binaries and action sequences

Advanced machine learning

techniques

[129] 2022 SizeOfOptionalHeader, MajorLinkerVersion,

AddressOfEntryPoint, SectionAlignment,

MinorOperatingSystemVersion,

SizeOfHeaders, SizeOfStackReserve,

LoaderFlags, SectionsMinEntropy,

SectionsMaxEntropy, SectionMaxRawsize,

SectionsMinVirtualsize, ResourcesMinEntropy

Multiple machine learning

algorithms: Decision Tree

(DT), Random Forest (RF),

Naïve Bayes (NB), Logistic

Regression (LR) as well as

Neural Network (NN)-based

classifiers

[130] 2022 SectionsMaxEntropy and ResourcesMaxEntropy Random forest

32

3.3. Dataset Repositories for Benign and Ransomware Samples

Many ransomware studies use samples from VirusShare9, theZoo10 , and

hybridanalysis.com. They form repositories with different ratios between the number of

benign and ransomware artifacts. Some repositories include general malware artifacts.

Table 3 presents a summary of ransomware repositories published from 2020 to 2022,

with their respective number of samples [86].

Table 3. Ransomware datasets (2020 -2022)

Study/year Tool Sample types Number of

artifacts

[87]/2020 Cuckoo Ransomware 1,354

Goodware 1,358

[88]2020 Intel Pin 3.2 Ransomware 1,000

Goodware 300

Malware 900

[89]]/2020 Log Parser Ransomware logs 17

Goodware logs 103,330

[90]/2020 Cuckoo Ransomware
NA

Goodware

[91]/2020 Cuckoo Ransomware 904

Goodware 942

[92]/2020 Events monitoring Ransomware 80

Goodware 76

[93]/2020 Sandbox Ransomware 550

Goodware 540

[94]/2020 Cuckoo Ransomware 1,254

[95]/2020 Weka and Python to develop

goodware

Ransomware 35,015

Goodware 500

Malware 500

[96]/2020 Cuckoo Ransomware 1,232

Goodware 1,308

[97]/2020 Cuckoo Ransomware 2,000

Goodware 2,000

[98]/2020 Not mentioned Ransomware 35,369

9 https://www.impactcybertrust.org/dataset_view?idDataset=1271
10 https://github.com/ytisf/theZoo

33

Study/year Tool Sample types Number of

artifacts

Goodware 43,191

[99]/2020 Cuckoo Ransomware 1,000

Goodware 1,000

[100]/2021 Cuckoo Ransomware 80

Non-ransomware 80

[101]/2020 Genymotion Ransomware 400

Goodware 400

[102]/2021 I/O from process execution Ransomware 206

[103]/2020 Not mentioned Ransomware 272

[104]/2020 Cuckoo Ransomware 625

Goodware 103

 [105]/2022 Cuckoo Ransomware 1,044

 [129]/2022 Not mentioned Ransomware 96,632

 Goodware 41,414

 [130]/2022 Not mentioned Ransomware 96,632

 Goodware 41,414

Table 4 shows relevant characteristics of previous studies to be used in subsequent

sections of this thesis to compare our analysis with that of other researchers related to

dynamic features selected, machine learning algorithms used or not, the number of samples

of ransomware and goodware, platforms, and performance. Table 4 also demonstrates that

most authors do not deliver a feature dataset.

Table 4. Characteristics of dynamic analysis solutions

Study Features used
in Dynamic

Analysis

Machine Learning
based/Algorithms

used

Dataset is
composed of
samples of

Feature
dataset
made

available

Platforms Performance

[14] Filesystem and
registry in
Windows.

Permission
monitoring in

Android.

No Ransomware
of 25 families

No Windows
10/Android

Not mentioned

[15]

API calls,
Registry Key

Operations, File
/Directory
System.

Yes / NB, and SVM 582
ransomware of

11 families,
and 942

goodware

No Windows ROC: 0.995

34

[16] File system,
Access

Patterns, and
I/O Data Buffer

Entropy.

No 148,223
general
malware

No Windows Detection rate
96.3%

[17] File System, I/O
monitoring

No 715
ransomware

No Windows 7 Detection rate
96.7%

[18]

Entropy analysis No Not mentioned No Windows Accuracy 92%

[19]

HTTP traffic
characteristics

No 750
CryptoWall 4.0
ransomware
traffic - 750

Locky
ransomware

traffic

No Windows Detection rate
97%-98%

[21]

API Calls Yes / SVM 588 logs, 312
goodware
and 276

ransomware
logs

No Windows Accuracy
97.48%

[23]

IRP Yes / NB, LR, DT,
RF

261 benign
and malicious

processes

No Windows Accuracy:
NB: 80.07%,
LR: 81.22%,
DT: 89.27%,
RF: 96.55%

[24]

API Calls Yes / RF, SVM, SL,
and NB

168
ransomware

No Windows 7 Maximum
accuracy SL:

98.2%

[25]

Command and
control (C&C)

server

Yes / RF 265
ransomware

related
flows.

No Windows Accuracy with
10 fold cross

validation 87%

[26]

Portable
Executable (PE)

File

No 450
ransomware

No Windows Accuracy 70%

[27]

Network Traffic Yes / DT (J48
classifier)

210
ransomware,
264 benign

Dataset
sample
showed

Windows Maximum F-
measure
96.8%

[28]

Ransomware
Opcodes
(Machine
Language

Instructions)

Yes / DT, RF, KNN,
NB, GBDT

1787
ransomware

No Windows Maximum
accuracy

99.3%

[29]

API Calls Yes / SVM, DT, RF,
GBDT

360
ransomware,
532 general

malware, and
460 benign

software

No Windows Maximum
Accuracy

96.1%

[30] API function
calls, counts of
the behavioral
features, and
counts of the

memory
features

No 1000
ransomware,
1000 benign

software

No Windows
XP

Detection rate
90%

[31]

API Calls,
File/Directory

System,
Shannon’s

Yes / LR, SVM, RF,
GBDT, ANN

574
ransomware

No Windows
7,

Windows
8.1

Detection rate
98.25%

35

Many ransomware studies use samples from sources already mentioned, such as

VirusShare11, theZoo12, VirusTotal, Anubis, and hybridanalysis.com. They form repositories

with different ratios between the number of benign and ransomware artifacts. Some

repositories include general malware artifacts. Ransomware datasets are found in [87].

These datasets contain varied quantities of ransomware and goodware samples. Some use

these datasets in isolated testbed tools. It is necessary to emphasize that these datasets

are only a collection of malware and goodware obtained from different sources. Any of them

have relevant features extracted from the artifacts. Also, as stated before, these datasets

are not readily accessible.

As far as the author knows, there is no accessible dataset with a robust set of dynamic

characteristics, making it challenging to develop detection and prevention solutions for the

constantly evolving signature-changing ransomware. A complete dataset of dynamic

11 https://www.impactcybertrust.org/dataset_view?idDataset=1271
12 https://github.com/ytisf/theZoo

Entropy of File
Writes

[32] Selects key
features using
Multi-Objective

Grey Wolf
Optimization

(MOGWO) and
Binary Cuckoo
Search (BCS)

algorithms

Yes / NB, RF, and
SMO

582
ransomware,

and 942
goodware

No Windows Accuracy
NB: 79.3%
RF: 82.67,
SMO: 82%

[79]

C&C
communications

No Database of
malicious

URLs

No - Time to disrupt
the

connection:
100 ms

[81] Master File
Table (MTF) and

I/O Request
Packets (IRP)

No Logs with
2000 user
activity and

2000
ransomware

activity

No Not
mentioned

Accuracy
97.4%

[105] I/O operation,
LBA, and
Entropy

Yes / RF, SVM,
KNN, CNN

7 ransomware
families

Yes Windows
7,

Windows
Server
2008

F-measure
from 0.57 to

0.99

[89] Semantic
Information from

Logs

Yes / Bi-LSTM Logs No Linux
Server,

Windows 7

Accuracy
96.5% - 99.7%

36

features is needed to be used as a basis for intelligent machine learning with the capability

to produce models to detect this threat before it causes damage. For this reason, this

research deals with these two issues: the generation of a relevant feature dataset and its

use to generate machine learning models to differentiate ransomware from goodware.

On the other hand, when other authors use dynamic features, they only use some attributes,

for example, attributes related to the network, API and DLL calls, or file systems. For better

classification results that even detect new variants, it is necessary to use a more complete

description of the ransomware activities delineated by the presence of all the relevant

dynamic features.

The performance of the studies in Table 4 uses several metrics. It varies from an accuracy

of 70% to a maximum of 99.7%; a maximum F-measure of 0.99; detection rate with values

from 90% to 98.25%; one paper presents a ROC of 0.995; and another shows a response

time of 100ns to disrupt the connection for C&C communication before the encryption is

made.

3.4. Comparison with Previous Research

The experiments carried out by other authors cannot be reproduced because we do not

have enough description of the environment, the datasets, or the specific dynamic

parameters with which they work. Other papers only state the number of ransomware and

goodware samples used, their sources, such as VirusTotal or VirusShare, and a not enough

detailed description of the dynamic parameters applied. Therefore, the information in Table

4 helps compare the methods and results of other studies with the ones in our research.

Our results are comparable to or better than those reported in other studies with an almost

perfect 10-fold cross-validation accuracy using random forest and gradient boosted trees.

It is important to state that the authors of the present paper initially conducted experiments

with partial sets of relevant features in the initial stages of the work. For instance, the

researchers used a partial set of relevant features over the training dataset. They obtained

results similar to the ones obtained with the complete set of 50 attributes, as seen in Table

21. The characteristics used correspond to procmemory: file_created; behavior (processes

and apistarts): regkey_read, dll_loaded; and network: udp, command_line, domain, tcp.

With these parameters, the accuracy results for training are good and go from 63.18% to

99.73%. However, using this partial set of parameters, these algorithms have a significantly

37

lower performance in testing with variants not present in the training set, with a higher

accuracy at a value of 54% for gradient boosted trees algorithms.

Therefore, the conclusion is that it is necessary to use the 50 chosen attributes that the

researchers include in the feature dataset to ensure excellent performance in detecting

ransomware variants not present in the training set. This is an essential differentiation of

our work, the ability to distinguish new variants due to the combination of the generation of

an input vector composed of a complete set of relevant features and the use of machine

learning algorithms fed with these attributes.

38

4. MATERIALS AND METHODS

Our research conducts dynamic analysis using a sandbox (cuckoo). Next, we present some

definitions related to this tool.

4.1. Cuckoo Sandbox

A sandbox is an isolated environment that allows the malware to be executed by

implementing specific security mechanisms to guarantee the environment's integrity [106].

A sandbox allows collecting information about the behavior of the artifact executed within it.

This information is later sent back to the environment where the sandbox is to analyze the

recorded behavior [107]. The implementation of a sandbox varies depending on what you

want to monitor [106]; however, a sandbox based on virtual machines is commonly used

[107].

A virtual machine can be perceived as a computer embedded within another computer. In

itself, you have a host operating system that can host one or more guest operating systems

so that the guest system cannot directly affect the integrity of the host system. Multiple

software solutions achieve this virtualization mode, such as VMWare Player, Virtualbox,

and Microsoft Hyper-V. In addition, this type of program allows you to create snapshots

which are an image of a specific virtual machine at a particular time [10]. With these

snapshots, the state of a virtual machine can be restored once an artifact's execution and

dynamic analysis process has finished [107].For dynamic malware analysis, it is necessary

to have a base snapshot to be able to reverse all the negative effects that malicious software

has caused on a virtual machine. Next, the flow of the analysis of a software artifact with

the use of a sandbox is described [107].

1. The host system searches for a free sandbox in case there is more than one available.

2. The host uses the base snapshot to reset the selected sandbox to its initial state and
starts it.

3. The host establishes a communication channel with the sandbox to monitor and
exchange information.

4. The artifact is transferred to the sandbox by the host system and executed.

5. The host uses multiple tools to monitor and record any activity or change within the
sandbox at the network level, file system, and operating system, among others.

39

6. The host proceeds to save all the information collected from the execution of the artifact
in the sandbox into one or multiple files for later review.

For this analysis process to be successful, the sandbox must be as similar as possible to a

standard user's computer. Otherwise, the artifact may detect that it is being analyzed and

may not run [107].

4.2. Feature Extraction Tool

Sampling artifacts (Goodware and Ransomware) and running tests on the Cuckoo Sandbox

system allowed the creation of a folder containing reports of the different analyses. Figure

8 shows the general structure of the JSON reports generated in the cuckoo sandbox [108].

A report has a tree-based structure. An application to select features in the different levels

was developed. For example, the features marked with yellow were chosen in the first stage.

The first level contains several categories such as ‘Info,’ ‘procmemory.’ To begin the

extraction process, the application visualizes the type of data stored in each category. The

JSON Cuckoo Sandbox reports are recursively loaded since there were nested directories,

and the program looks up every json file contained in a given directory.

Author: Juan A. Herrera Silva

Figure 8. General structure of the JSON reports

40

Figure 9 presents the GUI of the extraction tool used to generate the input vector for the

machine learning algorithms, with the final 50 features:

Select a directory button will make a dialog box appear so that we can select the directory

where our JSON reports reside.

Family and Artifact checkbox: This option allows us to obtain the ‘Family’ and ‘Artifact’

columns in our dataset. We must have a specific directory hierarchy to do this.

Select Features checkbox trees: A series of checkboxes we can use to define which

features we want to extract from the JSON reports.

Extraction Method button group: To select the extraction method to use.

Figure 9. GUI components of the feature extraction application.

For instance, the ‘network’ category contains features like ‘hosts’ and ‘dns.’ ‘dns’ includes

the ‘request’ feature. The program extracts all data collected in these features and writes

41

the data contained in a list of any primitive data type or a list of dictionaries to a CSV

extension file (Figure 10). This file is the feature vector inputs in the machine learning

algorithms to generate models to detect locker ransomware, encryptor ransomware, or

goodware. Annex A contains more information about this application. Annex B presents

examples of its use.

42

Author: Juan A. Herrera Silva

Figure 10. CSV file with extracted features

artifact family requests udp hosts tcp domains regkey_read

Ryuk L slscr.update.microsoft.com{'src': '192.168.56.50', 'dst': '192.168.56.255', 'offset': 247673, 'time': 5.289068937301636, 'dport': 137, 'sport': 137}172.217.2.78 {'src': '172.217.8.131', 'dst': '192.168.56.50', 'offset': 1382, 'time': 110.11897492408752, 'dport': 49750, 'sport': 443}{'ip': '', 'domain': 'DESKTOP-49GRPRH.local'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\ActivateInSharedBroker

Ryuk L www.bing.com {'src': '192.168.56.50', 'dst': '192.168.56.255', 'offset': 251993, 'time': 106.72884392738342, 'dport': 138, 'sport': 138}172.217.8.131 {'src': '192.168.56.50', 'dst': '13.107.246.13', 'offset': 1906, 'time': 47.79032897949219, 'dport': 443, 'sport': 49716}{'ip': '52.191.219.104', 'domain': 'settings-win.data.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\AppID

Ryuk L r2---sn-jou-0pve7.gvt1.com{'src': '192.168.56.50', 'dst': '224.0.0.251', 'offset': 484921, 'time': 3.2075510025024414, 'dport': 5353, 'sport': 5353}13.107.246.13 {'src': '192.168.56.50', 'dst': '13.107.4.52', 'offset': 13019, 'time': 3.1798360347747803, 'dport': 80, 'sport': 49675}{'ip': '172.217.3.131', 'domain': 'update.googleapis.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{c53e07ec-25f3-4093-aa39-fc67ea22e99d}\InProcServer32\InprocServer32

Ryuk L pti.store.microsoft.com{'src': '192.168.56.50', 'dst': '224.0.0.252', 'offset': 485849, 'time': 5.317975044250488, 'dport': 5355, 'sport': 55905}13.107.4.52 {'src': '192.168.56.50', 'dst': '13.88.21.125', 'offset': 14540, 'time': 48.02509784698486, 'dport': 443, 'sport': 49715}{'ip': '168.61.161.212', 'domain': 'watson.telemetry.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\ServiceName

Ryuk L DESKTOP-49GRPRH.local{'src': '192.168.56.50', 'dst': '224.0.0.252', 'offset': 486031, 'time': 3.208366870880127, 'dport': 5355, 'sport': 61750}13.88.21.125 {'src': '192.168.56.50', 'dst': '142.250.64.206', 'offset': 26760, 'time': 88.32839798927307, 'dport': 443, 'sport': 49739}{'ip': '204.79.197.200', 'domain': 'www.bing.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{657A8842-0B5E-40E1-B8CB-9AAFACC33AAB}\ProxyStubClsid32\(Default)

Ryuk L client.wns.windows.com{'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 511845, 'time': 3.6067328453063965, 'dport': 3702, 'sport': 54295}142.250.64.206 {'src': '192.168.56.50', 'dst': '142.250.64.206', 'offset': 27332, 'time': 96.87570595741272, 'dport': 443, 'sport': 49753}{'ip': '13.107.246.13', 'domain': 'pti.store.microsoft.com'}HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\CPC\Volume\{5840cd61-0000-0000-0000-100000000000}\Generation

Ryuk L dns.msftncsi.com {'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 517301, 'time': 9.401492834091187, 'dport': 3702, 'sport': 55906}172.217.8.99 {'src': '192.168.56.50', 'dst': '172.217.8.99', 'offset': 34010, 'time': 41.226810932159424, 'dport': 80, 'sport': 49693}{'ip': '13.107.4.52', 'domain': 'www.msftconnecttest.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\Permissions

Ryuk L ctldl.windowsupdate.com{'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 536397, 'time': 3.2882020473480225, 'dport': 3702, 'sport': 61341}191.232.139.2 {'src': '192.168.56.50', 'dst': '172.217.8.99', 'offset': 37047, 'time': 91.38939905166626, 'dport': 443, 'sport': 49750}{'ip': '52.242.101.226', 'domain': 'slscr.update.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\ActivationType

Ryuk L go.microsoft.com {'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 545469, 'time': 5.3434059619903564, 'dport': 1900, 'sport': 61753}192.16.58.8 {'src': '192.168.56.50', 'dst': '191.232.139.2', 'offset': 47620, 'time': 148.77478003501892, 'dport': 443, 'sport': 49758}{'ip': '40.125.122.151', 'domain': 'fe3cr.delivery.mp.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{8645456f-d9a2-4b82-afec-58f0e8df0acf}\ProxyStubClsid32\(Default)

Ryuk L clients2.google.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2925720, 'time': 32.08410286903381, 'dport': 53, 'sport': 49447}204.79.197.200 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 240329, 'time': 24.43367886543274, 'dport': 80, 'sport': 49687}{'ip': '40.126.0.67', 'domain': 'login.live.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\Permissions

Ryuk L settings-win.data.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926042, 'time': 32.29827094078064, 'dport': 53, 'sport': 50547}205.185.216.10 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 242227, 'time': 26.111546993255615, 'dport': 80, 'sport': 49689}{'ip': '23.47.69.106', 'domain': 'www.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\ActivateOnHostFlags

Ryuk L displaycatalog.mp.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926252, 'time': 47.24130988121033, 'dport': 53, 'sport': 51165}216.58.192.46 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 244124, 'time': 29.581557989120483, 'dport': 80, 'sport': 49690}{'ip': '142.250.64.206', 'domain': 'clients2.google.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\TrustLevel

Ryuk L redirector.gvt1.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926582, 'time': 39.67796301841736, 'dport': 53, 'sport': 51691}23.14.81.129 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 246028, 'time': 102.9298779964447, 'dport': 80, 'sport': 49756}{'ip': '131.107.255.255', 'domain': 'dns.msftncsi.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\ActivateOnHostFlags

Ryuk L www.msftconnecttest.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926884, 'time': 148.6764178276062, 'dport': 53, 'sport': 53476}23.47.68.94 {'src': '192.168.56.50', 'dst': '204.79.197.200', 'offset': 252745, 'time': 149.01046204566956, 'dport': 443, 'sport': 49759}{'ip': '201.219.34.141', 'domain': 'r2---sn-jou-0pve7.gvt1.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{78662bbb-1464-4279-b5ff-ffccb2bc6529}\ProxyStubClsid32\(Default)

Ryuk L fe3cr.delivery.mp.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2927208, 'time': 47.47233295440674, 'dport': 53, 'sport': 53826}23.47.69.106 {'src': '192.168.56.50', 'dst': '204.79.197.200', 'offset': 447199, 'time': 149.0102880001068, 'dport': 443, 'sport': 49761}{'ip': '23.78.97.156', 'domain': 'go.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Storage.Streams.DataWriter\TrustLevel

Ryuk L www.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2927597, 'time': 2.2842659950256348, 'dport': 53, 'sport': 54294}40.125.122.176 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 457014, 'time': 21.234046936035156, 'dport': 80, 'sport': 49684}{'ip': '192.16.58.8', 'domain': 'ocsp.digicert.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\ExePath

Ryuk L update.googleapis.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2927893, 'time': 40.966691970825195, 'dport': 53, 'sport': 54905}40.126.5.36 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 463766, 'time': 21.228873014450073, 'dport': 80, 'sport': 49685}{'ip': '172.217.0.174', 'domain': 'redirector.gvt1.com'}HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Nls\Sorting\Versions\000602xx

Ryuk L fs.microsoft.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2928306, 'time': 148.257257938385, 'dport': 53, 'sport': 55235}40.88.32.150 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 470588, 'time': 94.43559002876282, 'dport': 80, 'sport': 49751}{'ip': '52.254.96.93', 'domain': 'displaycatalog.mp.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\Server

Ryuk L ocsp.digicert.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2928611, 'time': 16.786031007766724, 'dport': 53, 'sport': 56170}52.147.198.201 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 480573, 'time': 103.20264601707458, 'dport': 80, 'sport': 49757}{'ip': '192.16.49.143', 'domain': 'ctldl.windowsupdate.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{89bc3f49-f8d9-5103-ba13-de497e609167}\ProxyStubClsid32\(Default)

Ryuk L watson.telemetry.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2929087, 'time': 159.9038529396057, 'dport': 53, 'sport': 56690}52.167.249.196 {'src': '192.168.56.50', 'dst': '216.58.192.46', 'offset': 481980, 'time': 97.05326986312866, 'dport': 80, 'sport': 49754}{'ip': '23.47.68.94', 'domain': 'fs.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\Identity

Ryuk L login.live.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2929417, 'time': 149.0616660118103, 'dport': 53, 'sport': 56935}52.177.165.30 {'src': '192.168.56.50', 'dst': '23.14.81.129', 'offset': 486447, 'time': 42.24982690811157, 'dport': 443, 'sport': 49701}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.ApplicationExtension\RemoteServer

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2929770, 'time': 72.19026494026184, 'dport': 53, 'sport': 57253}52.191.219.104 {'src': '192.168.56.50', 'dst': '23.47.68.94', 'offset': 495641, 'time': 61.88777804374695, 'dport': 443, 'sport': 49733}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.ApplicationExtension\Threading

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930000, 'time': 76.76400685310364, 'dport': 53, 'sport': 57709}52.251.11.100 {'src': '192.168.56.50', 'dst': '23.47.69.106', 'offset': 505196, 'time': 150.4104459285736, 'dport': 80, 'sport': 49762}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.ApplicationExtension\ActivateOnHostFlags

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930330, 'time': 4.830180883407593, 'dport': 53, 'sport': 58697}8.8.8.8 {'src': '192.168.56.50', 'dst': '23.47.69.106', 'offset': 507677, 'time': 157.83673191070557, 'dport': 80, 'sport': 49764}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\ActivateInSharedBroker

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930607, 'time': 51.30108284950256, 'dport': 53, 'sport': 58739}201.219.34.141 {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 551511, 'time': 42.354718923568726, 'dport': 443, 'sport': 49702}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\DllPath

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930884, 'time': 4.676063060760498, 'dport': 53, 'sport': 59010}52.177.166.224 {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 584332, 'time': 71.25142002105713, 'dport': 443, 'sport': 49737}N/A HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\CPC\Volume\{5840cd61-0000-0000-0000-402400000000}\Data

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2931084, 'time': 75.19516801834106, 'dport': 53, 'sport': 59389}N/A {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 589427, 'time': 81.8621678352356, 'dport': 443, 'sport': 49748}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Storage.Streams.DataWriter\ActivateInBrokerForMediumILContainer

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2931560, 'time': 97.17227792739868, 'dport': 53, 'sport': 59618}N/A {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 628341, 'time': 83.35698294639587, 'dport': 443, 'sport': 49749}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\AppId

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2931810, 'time': 39.92110800743103, 'dport': 53, 'sport': 59954}N/A {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 671408, 'time': 94.79088091850281, 'dport': 443, 'sport': 49752}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\Permissions

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932089, 'time': 24.211379051208496, 'dport': 53, 'sport': 60936}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 709967, 'time': 17.508342027664185, 'dport': 443, 'sport': 49682}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\ActivateAsUser

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932323, 'time': 96.86789393424988, 'dport': 53, 'sport': 61268}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 752405, 'time': 17.51578187942505, 'dport': 443, 'sport': 49683}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\ServerType

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932529, 'time': 24.780714988708496, 'dport': 53, 'sport': 63044}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 777779, 'time': 23.634567975997925, 'dport': 443, 'sport': 49686}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{1bb373e7-f9b5-5c96-a392-cb957cb3ee66}\ProxyStubClsid32\(Default)

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932878, 'time': 20.602656841278076, 'dport': 53, 'sport': 63058}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 818662, 'time': 75.57214999198914, 'dport': 443, 'sport': 49742}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\InProcServer32\InprocServer32

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2933273, 'time': 61.72096300125122, 'dport': 53, 'sport': 64133}N/A {'src': '192.168.56.50', 'dst': '40.88.32.150', 'offset': 860626, 'time': 77.07390189170837, 'dport': 443, 'sport': 49745}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\InProcServer32\(Default)

43

4.4. Phases of Experimentation

In this research, we conduct experimentation in three different phases as part of the

quantitative - experimental research. Table 5 describes these different stages. Phase

previous allowed generating learning models with a somewhat unrealistic prediction value,

reaching 100% accuracy because it was a one-class classification that did not include

goodware; this phase used a dataset generated only with ransomware artifacts and seven

features.

Table 5. Description of the experimental phases.

Phases Ransomware Goodware Features Dataset

(rows)

Dataset

(columns)

Sandboxing

experiments

Phase

previous (0)

5 - 8 6.783 10 100

Phase initial

(1)

10 10 8 47.959 10 380

Phase

analysis (2)

10 10 5 (group of

features)

62.989 16 380

Phase final

(3)

20 20 50 1.424.344 50 2000

Table 6 describes the characteristics of the objects that could be selected as features for the

input vector that will be fed to the classification algorithm. A detailed description of these

features can be found in Annex C. It was noticed that these predictive models would not be

valid because the dataset was not balanced, and there was a bias in the classification of the

only one majority class. However, this was a good first approximation for generating a

ransomware detection dataset.

44

Table 6. Feature description

Object Description Feature Explanation Reason for Choosing the Feature

PROCMEMORY It allows the creation

of memory dumps

for each analyzed

process (before they

finish or before the

analysis ends).

File File created as a

memory dump

The feature is chosen because this

information allows memory forensics

monitoring file modifications to find

an unusual increase in particular

extensions.

URLs URLs generated

during the

execution of

memory

processes

The feature is chosen because it

stores a list of URLs that can be

modeled as suspicious.

PID Process identifier The feature is chosen because it

identifies the generated file (file).

name Name of the

process in

memory

The feature is chosen because it

identifies the name of a possible

suspicious process.

types Artifact type The feature is chosen because it

identifies the type of artifact.

URLs URLs used by the

process in

memory

The feature is chosen because it

identifies URLs used in memory by

the process.

path Memory process

storage directory

The feature is chosen because it

identifies the directory.

EXTRACTED It contains

information about

scripts executed by

an artifact during

artifact analysis.

info Information of the

script in question

The feature is chosen because it

identifies information about scripts

that could be used during attacks.

program Type of program

executing the

script

The feature is chosen because it

identifies the program that executes

possible malicious scripts.

NETWORK

Includes information

on the network

infrastructure used

during the analyses

dns_servers DNS servers

involved in the

analysis

The feature is chosen due to

communication with external domain

servers. DNS sub-characteristics

(request).

mitm Network analysis

to verify the type

of attacks

man-in-the-middle

The feature is chosen because it

identifies attacks man-in-the-middle

where a perpetrator is positioned in

an exchange between a user and an

application.

dead_hosts Hosts down during

data transmission

The feature is chosen because it

identifies hosts down, which could be

one of the effects of ransomware.

udp network analysis

of the udp protocol

The feature is chosen due to the use

of communication via UDP protocol.

It corresponds to the udp port

number that ransomware could

open.

tcp network analysis

of the tcp protocol

The feature is chosen due to the use

of communication via TCP protocol.

It corresponds to the tcp port

number that ransomware could

open.

45

Object Description Feature Explanation Reason for Choosing the Feature

hosts hosts involved in

the analysis. Help

create blacklists

The feature is chosen because of the

communication with a malicious host.

With this information, we can create

blacklists.

domain Domains involved in

communication

The feature is chosen because

communication with other domains

may be a clue for identifying

ransomware.

request Domains to which

requests were

sent (queries)

DNS

The feature is chosen because it

serves to monitor possible suspicious

requests.

SIGNATURES It contains

information about

tasks or processes

before, during, and

after the analysis

and the API calls

executed by the

analyzed artifact.

families A list of malware

family names

The feature is chosen because it

identifies requests that were sent.

description Signature

Description

The feature is chosen because it

supplements information about

possible ransomware.

name Signature name The feature is chosen because it

supplements information about

possible ransomware.

category API call category The feature is chosen because it

supplements information about

possible ransomware. The category

of the API calls can be used to

model the application behavior.

stacktrace Execution stack

related to a

api call

The feature is chosen because it

supplements information about

possible ransomware. The

stacktrace of the API calls can be

used to model the application

behavior.

api API call in

question

The feature is chosen because it

supplements information about

possible ransomware. Some

characteristics of the API calls can

be used to model the application

behavior.

arguments Arguments of the

API call in

question

The feature is chosen because it

supplements information about

possible ransomware. Arguments of

the API call can be used to model

the application behavior.

STATIC Contains

information about a

static analysis

performed by

Cuckoo in case the

analyzed artifact is

of type Portable

Executable (PE).

imported_dll

_count

Number of system

DLLs

imported by

artifact

The feature is chosen because it

contains artifact information when the

artifact is portable executable.

dll System DLL

libraries used by

the

artifact during

analysis

The feature is chosen because it

contains artifact information when the

artifact is portable executable.

name artifact name The feature is chosen because it

contains artifact information when the

artifact is portable executable.

46

Object Description Feature Explanation Reason for Choosing the Feature

filetype artifact type The feature is chosen because it

contains artifact information when the

artifact is portable executable.

entropy Entropy level of

the artifact in

question

Encryption changes the content.

Therefore, it has a higher entropy

value. This characteristic could help

to detect encryption and

ransomware; thus, it was selected.

name Sections found

within the artifact

The feature is chosen because it

contains artifact information when the

artifact is portable executable.

BEHAVIOR It allows seeing the

behavior of

ransomware, that is,

to see the

processes that the

ransomware

performs, libraries to

which it makes calls,

registry keys that

affect

Processes Processes carried

out by the device

The feature is chosen because

processes modify the infected

system. The authors selected sub-

characteristics processes

(process_path, pid, process_name,

command_line, and ppid).

Processtree executed child

processes derived

from the process

tree

The feature is chosen because

processtree contains subprocesses

that modify the infected system. The

authors selected sub-characteristics

processtree (process_name,

command_line, and children).

Summary Summary of files,

log keys,

directories, and

commands

involved during

the execution of

processes

The feature is chosen because it

contains parameters that affect

infected systems.

The sub-characteristics summary

(regKeys) is chosen because

register values are modified during a

ransomware attack. In addition, the

sub-characteristics (file_created,

dll_loaded, wmi_query,

command_line, file_read, and

directory_enumerated) are chosen

because ransomware uses these

function calls to execute malicious

operations in the OS_file system.

DEBUG It contains

information about

the analysis

performed on an

artifact.

action Actions recorded

during analysis

This feature was selected because it

gives information about the Cuckoo

and its actions during the

experiments' execution.

errors Errors logged

during analysis

This feature was selected because it

gives information about the Cuckoo

and its actions during the

experiments' execution.

log

Various

information about

the analysis

executed

This feature is selected because it

gives information about all the

occurrences inside the cuckoo

sandbox during the experiments’

execution.

47

Annex C describes in detail the main objects such as info, procmemory, target, extracted,

buffer, network, signatures, static, dropped, behavior, debug, and their respective features,

which are present in a .json file. There is a total of 326 features, of which a sweep of all of

them was made, reviewing their behavior, what they represented and their main occurrence

in the JSON file. The main features that were selected for their Ransomware behavior in

the previous, initial and analysis phases are highlighted in yellow. For the final phase, the

features highlighted in light blue and purple were selected, giving a total of 64 features

selected with an engineering procedure. After which, an automatic feature selection method

was used, which is the Mutual Information Matrix and it can be seen which features have a

high correlation with each other and these features that are more correlated are the ones

that can be removed for selection. So, using this criterion we removed 14 features and

worked with the final 50 features for modeling, since they have to do with the behavior of

ransomware and have relevance because they are not redundant, since they are not related

to others.

Phases Initial and Analysis

In phase one, it was considered the incorporation of more ransomware artifacts and, at the

same time, the use of goodware to balance the dataset. We used the same seven features

to obtain new predictive models, with the applied algorithms observed that the models did

not exceed 85% accuracy.

During experimentation, Phase analysis was developed to extend the dataset towards

accuracy improvement. It had the same amount of Ransomware and goodware artifacts,

and it had six more features depending on the analysis of the MITRE ATT&CK matrix.

It should be emphasized that in the analysis of the .json files, a set of features was chosen

in two levels, starting with the superior one in the .json files. From the first stage analysis,

the conclusion is that the regkey_read feature most affects the system due to its density in

the .json file's ransomware logs.

The same criteria were chosen, and the UDP and file_created characteristics were selected.

During ransomware communication to the compromised system to identify the source and

destination IP and source and destination ports, it was noted that UDP helps. The

file_created feature supports identifying files created by ransomware during the infection

process.

48

With the described background, the machine learning algorithms generated the models

using three characteristics grouped into one. They used five combinations to input to the

classification algorithms to achieve detection and prediction of the ransomware and

goodware artifacts. Table 7 describes the objects taken from the "report.json" file obtained

from Cuckoo Sandbox and the description and importance of each parameter.

The file .json consists of 15 objects, and in each item, there are features that, in turn, contain

other nested data. The objects analyzed are three: proc memory, network, and behavior.

We extract the characteristics of interest from these files using a developed application that

allows us to obtain the nested values inside the files according to feature selection criteria.

This application is introduced in section 4.2 and explained in detail in Annex A and B.

 The methodological approach applied mainly for phases initial and analysis is explained

below to describe the dataset generation.

Table 7. Description of dataset column (features Phase initial and analysis).

Identifier Description Phase

ARTIFACT Identifiers associated with ransomware samples, for example, 1 for 7-Zip Initial and

analysis

FAMILY Identifiers associated with the type of ransomware or goodware, i.e., locker

or encryptor. E for encryptor, L para locker, and G for goodware.

Initial and

analysis

REGWRITE An identifier associated with written log keys. It has got two zeros ahead.

Example: 00100

Initial and

analysis

REGOPEN An identifier related to open registry keys. It has got three zeros ahead.

Example: 000100

Initial and

analysis

REGREAD An identifier associated with reading log keys. It has got four zeros ahead.

Example: 0000100

Initial and

analysis

PROC Identifier associated with tit set formed by pid, process_name, and ppid. It

has got a zero in front. Example: 0100

Initial and

analysis

PMFILES Identifier associated with generated memory dump files. It takes into

account PID and file as a set. It has five zeros in front. Example: 00000100

Initial and

analysis

PMURLS Identifier associated with URLs generated in memory. It has got six zeros

ahead. Example 000000100

Initial and

analysis

NETHOSTS Identifier associated with the host involved. It has got seven zeros ahead.

Example: 0000000100

Initial and

analysis

NETREQUESTS Identifier associated with domains to which requests are made. It has got

eight zeros ahead. Example 00000000100

Initial and

analysis

FILECREATED Identifier associated with different files created (tmp, ini, bat, among other

types) with which it performs the infection and propagation. It has nine

zeros ahead. Example: 000000000100

Analysis

49

Identifier Description Phase

DLLLOADED Identifier associated with dlls loaded by the device. It has ten zeros ahead.

Example: 0000000000100

Analysis

COMMANDLINE Identifier associated with commands that could execute the artifact (Power

Shell, CMD). It has 11 zeros ahead. Example: 00000000000100

Analysis

DOMAIN Identifier associated with domains and IP addresses with which the device

communicates. It has 12 zeros ahead. Example: 000000000000100

Analysis

TCP Identifier associated with the tcp protocol used by the device. It has 13

zeros ahead. Example: 0000000000000100

Analysis

UDP Identifier associated with the udp protocol used by the device. It has 14

zeros ahead. Example: 00000000000000100

Analysis

The features are chosen to obtain the best classification performance. We use feature

engineering to extract features that provide enough information about the goodware and

the ransomware. Characteristics with redundant information are not considered, and

features that appear not to influence the results are not considered.

For Phase initial, it was considered the "DNS" features of the "network" object that contains

sub-characteristics. "Request" was considered because it allows viewing domain names

during a system's infection. In the case of the object "behavior," the characteristics

"processes" and "summary" also contain sub-characteristics. The feature "Processes"

includes "pid" (represents the process identifier), "process_name" (represents the process

name), and "ppid" (represents the parent process identifier). The "summary" feature,

"regkey_opened" (open registry keys), "regkey_read" (read registry keys) and

"regkey_written" (written registry keys) were also considered.

On the other hand, in Phase analysis, it was added the "domain," "tcp," and "udp" features

of the "network" object, which identify communications in the network. Additionally, the sub-

characteristics mainly involved in the behavior of ransomware "file_created," "dll_loaded,"

and "command_line" were chosen.

With these considerations, 380 of the total experiments generated the corresponding json

files to obtain the final dataset. The mentioned features emulate the different ransomware

artifacts’ behavior in an isolated and controlled testing environment, which is useful for

constructing the dataset. A set of identifiers for the dataset are described in Table 8. Each

identifier can, in turn, identify a characteristic or set of previously selected parameters. It is

necessary to clarify that the relationship in the dataset between the artifact (ransomware

sample) and the different parameters was obtained from our analysis.

50

Phase Final – Selected Features

With the background of phases from previous to analysis, a third phase was developed in

which several datasets were generated (Phase final). To generate the dataset, 2000

experiments were performed with 20 ransomware samples and 20 Goodware samples.

Characteristics were selected if they were affected during the infection process. Other

characteristics were also selected that affected the infection process. These characteristics

are reflected in Table 7. The identifiers are assigned depending on the number of times that

features have been counted, that is, integer values starting with 0 when not there are

records and from 1 onwards when there are records.

Table 8. Description of the dataset features for Phase final.

Identifier Description Phase

family Identifiers associated with the type of ransomware or goodware, locker or

encryptor. E for encryptor, L for locker, and G for goodware.

Final

proc_pid Identifier associated with the process identifier. Integer values are

assigned starting at 0 if no record exists

Final

file Identifier associated with the file's name created as a memory dump of

the analyzed artifact. Integer values are assigned starting at 0 if no record

exists

Final

urls Identifier associated with URLs found during the core dump process.

Integer values are assigned starting at 0 if no record exists

Final

type Identifier associated with the artifact type. Integer values are assigned

starting at 0 if no record exists

Final

name Identifier associated with the name of the process in memory. Integer

values are assigned starting at 0 if no record exists

Final

ext_urls Identifier associated with URLs used by the process in memory. Integer

values are assigned starting at 0 if no record exists

Final

path Identifier associated with the storage directory of the memory process.

Integer values are assigned starting at 0 if no record exists

Final

program Identifier associated with the type of program that executes the script.

Integer values are assigned starting at 0 if no record exists

Final

info Identifier associated with the Information of the script that executes a

program. Integer values are assigned starting at 0 if no record exists

Final

families Identifier associated with a list of malware family names. Integer values

are assigned starting at 0 if no record exists

Final

description Identifier associated with the signature description. Integer values are

assigned starting at 0 if no record exists

Final

sign_name Identifier associated with the name of the firm. Integer values are

assigned starting at 0 if no record exists

Final

51

Identifier Description Phase

sign_stacktrace Identifier associated with the execution stack related to an API call.

Integer values are assigned starting at 0 if no record exists

Final

arguments Identifier associated with arguments of the API call. Integer values are

assigned starting at 0 if no record exists

Final

api Identifier associated with the API call. Integer values are assigned

starting at 0 if no record exists

Final

category Identifier associated with the category of the API call. Integer values are

assigned starting at 0 if no record exists

Final

imported_dll_count Identifier associated with the number of system DLLs imported by the

artifact. Integer values are assigned starting at 0 if no record exists

Final

dll Identifier associated with system DLL libraries used by the artifact during

analysis. Integer values are assigned starting at 0 if no record exists

Final

pe_res_name Identifier associated with the artifact name. Integer values are assigned

starting at 0 if no record exists

Final

filetype Identifier associated with the artifact type. Integer values are assigned

starting at 0 if no record exists

Final

pe_sec_name Identifier associated with the name of sections found within the artifact.

Integer values are assigned starting at 0 if no record exists

Final

entropy Identifier associated with the artifact's entropy level. Integer values are

assigned starting at 0 if no record exists

Final

hosts Identifier associated with the IP addresses of the Hosts involved during

the analysis. Integer values are assigned starting at 0 if no record exists

Final

requests Identifier associated with domains to which DNS requests (queries) were

sent. Integer values are assigned starting at 0 if no record exists

Final

mitm Identifier associated with network analysis to verify Man-in-the-middle

type attacks. Integer values are assigned starting at 0 if no record exists

Final

domains Identifier associated with domains with which communication was

established during the analysis. Integer values are assigned starting at 0

if no record exists

Final

dns_servers Identifier associated with DNS servers used by the artifact during

analysis. Integer values are assigned starting at 0 if no record exists

Final

tcp Identifier associated with tcp connections established during the analysis.

Integer values are assigned starting at 0 if no record exists

Final

udp Identifier associated with udp connections established during the

analysis. Integer values are assigned starting at 0 if no record exists

Final

dead_hosts Identifier associated with hosts down during data transmission. Integer

values are assigned starting at 0 if no record exists

Final

proc Identifier associated with the name of the process in memory. Integer

values are assigned starting at 0 if no record exists

Final

beh_command_line Identifier associated with commands executed during the analysis.

Integer values are assigned starting at 0 if no record exists

Final

52

Identifier Description Phase

process_path Identifier associated with the directory where the process is stored on the

victim system. Integer values are assigned starting at 0 if no record exists

Final

tree_command_line Identifier associated with commands executed during the analysis.

Integer values are assigned starting at 0 if no record exists

Final

children Identifier associated with processes initialized by the artifact. Integer

values are assigned starting at 0 if no record exists

Final

tree_process_name Identifier associated with the name of the child process. Integer values

are assigned starting at 0 if no record exists

Final

command_line Identifier associated with commands executed during the analysis.

Integer values are assigned starting at 0 if no record exists

Final

regkey_read Identifier associated with registry keys read during the scan. Integer

values are assigned starting at 0 if no record exists

Final

directory_enumerated Identifier associated with directories listed by the artifact. Integer values

are assigned starting at 0 if no record exists

Final

regkey_opened Identifier associated with registry keys opened during the scan. Integer

values are assigned starting at 0 if no record exists

Final

file_created Identifier associated with files created by the artifact. Integer values are

assigned starting at 0 if no record exists

Final

wmi_query Identifier associated with Windows Administration instrumentation

queries. Integer values are assigned starting at 0 if no record exists

Final

dll_loaded Identifier associated with DLL libraries used by the artifact. Integer values

are assigned starting at 0 if no record exists

Final

regkey_written Identifier associated with registry keys written by the artifact. Integer

values are assigned starting at 0 if no record exists

Final

file_read Identifier associated with files read during the scan. Integer values are

assigned starting at 0 if no record exists

Final

apistats Identifier associated with the accounting of each API call made during the

analysis. Integer values are assigned starting at 0 if no record exists

Final

errors Identifier associated with errors logged during analysis. Integer values are

assigned starting at 0 if no record exists

Final

action Identifier associated with actions recorded during the analysis. Integer

values are assigned starting at 0 if no record exists

Final

log Identifier associated with various information about the performed

analysis. Integer values are assigned starting at 0 if no record exists

Final

A tool created to select the characteristics described in the previous table was used in

making the datasets, as seen in section 4.2. When choosing the features, a total of 12 were

created. Table 9 shows the number of characteristics of each dataset and some

observations regarding each one.

53

Table 9. Datasets description

Dataset Features Observation

DATASET 1

6 features

udp, domains, file_created,

dll_loaded, command_line,

regkey_read

The reason for selecting this dataset's characteristics is that

with them, the best results were obtained in the models in

phases initial and analysis.

DATASET 2

7 features

udp, domains, file_created,

dll_loaded, command_line,

regkey_read, api

The api feature is added due to its density within the

report.json files

DATASET 3

8 features

udp, domains, file_created,

dll_loaded, command_line,

regkey_read, api, URLs, proc

The pid, process_name, and ppid (proc) features are added to

understand the behavior of the processes running during the

ransomware infection. With these characteristics, the id of the

processes and their name are identified. Identifier associated

with URLs found during the core dump process. Integer values

are assigned starting at 0 if no record exists

DATASET 4

11 features

udp, domains, file_created,

dll_loaded, command_line,

regkey_read, api, urls, proc, tcp,

hosts, request

Se agregan las características tcp, hosts y request con el

propósito de identificar puertos de comunicación por tcp, hosts

involucrados y respuestas dadas durante la comunicación en

la red

DATASET 5

12 features

udp, domains, file_created,

dll_loaded, command_line,

regkey_read, api, URLs, proc,

tcp, hosts, request, children

The children feature is added to see the processes within the

process tree

DATASET 6

13 features

udp, domains, file_created,

dll_loaded, command_line,

regkey_read, api, URLs, proc,

tcp, hosts, request, children,

entropy

The entropy feature was added due to its contribution to

entropy

DATASET 7

14 features

udp, tcp, hosts, domains,

request, proc, file_created,

dll_loaded, regkey_opened,

command_line, regkey_read,

regkey_written

The 14 features were chosen from Phase analysis– Initial

Dataset Experimentation with Rapid Minder

DATASET 8

15 features

URLs, udp, tcp, hosts, domains,

request, api, dll, entropy, proc,

children, file_created,

dll_loaded, command_line,

regkey_read

The URLs and dll features were added due to their density

within the json file and also because, in previous analyzes of

the models, they contributed considerably

DATASET 9

16 features

file, URLs, udp, tcp, hosts,

domains, request, api, dll,

entropy, proc, children,

file_created, dll_loaded,

command_line, regkey_read

Added file feature due to a previous analysis of models

DATASET 10

17 features

file, URLs, udp, tcp, hosts,

domains, request, api, dll,

entropy, proc, children,

file_created, dll_loaded,

command_line,

regkey_read,regkey_written

Added regkey_written feature due to its density within the json

file and also because previous analyzes on models added

significantly

DATASET 11

25 features

file, URLs, name, program,

positives, udp, tcp, hosts,

domains, request, sign_name,

api, dll, filetype, entropy, errors,

apistats, proc, file_created,

dll_loaded, command_line,

regkey_read,regkey_written

Added name program positives sign_name filetype errors

apistats file_read features to complement features of each

main object

54

Dataset Features Observation

DATASET 12

50 features

All characteristics All the characteristics were selected to know how they affect

the performance of the models. SeeTable 7.

4.5. Test Setting

It was considered a test scenario in an isolated environment, allowing essential information

to obtain. Then, our feature extraction tool filtered the attributes required for the dataset

conformation. The deployment was based on a safe environment using the cuckoo sandbox

tool [109] in the Cybersecurity Laboratory (Advanced Data Analytics).

Phases Previous, Initial and Analysis

The network topology used to generate the dataset in Phases Previous, Initial and Analysis

is presented in Figure 11. This experimentation was carried out on 2 victim machines and

14 features were obtained for an initial analysis of ransomware behavior.

Author: Juan A. Herrera Silva

Figure 11. Test environment network topology for Phases Previous to Analysis

55

For phases initial and analysis, the following ransomware samples were considered:

CryptoLocker, CryptoWall, and PetrWrap. Petya, WannaCry, Cerber, Locky, Radamant,

Satana, and TeslaCrypt13. The goodware samples were: Windows 7, Winzip, Acrobat

Reader, Chrome, Explorer, DllHost, Firefox, Services, and Svchost14.

As part of the experiments, the report data was obtained based on Cuckoo logs (*.json,

*.pcap, among others). This data generates csv files to proceed with the analysis. A total

of 380 experiments are carried out, considering 20 analyses for each device. Ten scans

were run for the victim using machine 1 with Windows XP, and similarly for the victim

consuming the machine with Windows 7 (ten scans). Experiments on this work were

conducted on the FIS-EPN Cybersecurity network, protected by a firewall and access

control and service control rules. After the attack runs, the report.html and report.json files

are obtained. The report.html contains summary information, and the file report.json

considered the following objects: proc memory, network, and behavior. As seen in Table 9,

we chose additional features to analyze each selected object.

In summary, for Phase initial and Phase experimental, the artifacts are presented in Table

10. There are 24 artifacts in total, as the ransomware applies the same artifact on Windows

XP and Windows 7. The phases are due to an evolution of the systematic work that has

been done. Parts of the dataset have been generated and tested in classifiers to evaluate

their performance. This process has been performed in several stages to obtain the most

relevant features for ransomware detection.

Table 10. Artifacts for Datasets in Phases Initial and Analysis

ID Name SHA1 MD5 Family Experiments

1 7-zipPortable_9.20_

Rev_2.paf.exe

35bcca0e8b907386ca4c7

536dc55913e3c71b220

7fa4441c55a838e0

691328cebde21802

G 20

2 AdbeRdr11008_es_

ES.exe

aa08e431163c6129697d0

aae7f4f9915bc90b2ba

3472d1522f956853

4a9116400af1a1be

G 10

3 AcroRdrDC19012200

36_es_ES.exe

ad998431b1ec06b2ea208

7e3a2ebc65a6d23ba9e

153311a588cbbc6f4

5ea4401bf081fec

G 10

4 cerber.exe c69a0f6c6f809c01db92ca

658fcf1b643391a2b7

8b6bc16fd137c09a0

8b02bbe1bb7d670

E 20

13 https://github.com/ytisf/theZoo/tree/master/malwares/Binaries
14 https://www.exefiles.com/en/

https://github.com/ytisf/theZoo/tree/master/malwares/Binaries
https://www.exefiles.com/en/

56

ID Name SHA1 MD5 Family Experiments

5 chrome.exe 04ca28f529aae1db4be4cf

b4c601f57c7d08f997

da2965d0020f4156

141c783ebcd64f0f

G 20

6 cryptolocker.exe 65559245709fe98052eb28

4577f1fd61c01ad20d

04fb36199787f2e3e

2135611a38321eb

E 10

7 cryptowall.bin ca963033b9a285b8cd004

4df38146a932c838071

47363b94cee907e2

b8926c1be61150c7

E 10

8 dllhost.exe ab0af67fd000646ed231ee

421e5c71798d0d86a0

0f886de058726bb6

323bfd98773fad26

G 10

9 dllhost.exe ace762c51db1908c858c8

98d7e0f9b36f788d2d9

a63dc5c2ea944e66

57203e0c8edeaf61

G 10

10 explorer.exe 78f905f135771dec9646f6f

753195adf5e7bf7c9

7522f548a84abad8f

a516de5ab3931ef

G 20

11 explorer.exe 84123a3decdaa217e3588

a1de59fe6cee1998004

38ae1b3c38faef56f

e4907922f0385ba

G 20

12 firefox.exe efe760ee6f516adb01e309

2e78bda904df908b56

9adcb5abe8bb7e1a

9355632817d23f43

G 20

13 locky b606aaa402bfe4a15ef801

65e964d384f25564e4

b06d9dd17c69ed2a

e75d9e40b2631b42

E 20

14 Petrwrap.exe 34f917aaba5684fbe56d3c

57d48ef2a1aa7cf06d

71b6a493388e7d0b

40c83ce903bc6b04

L 20

15 petya.bin d1c62ac62e68875085b62f

a651fb17d4d7313887

a92f13f3a1b3b3983

3d3cc336301b713

L 20

16 radamant.ViR 05ae9c76f8f85ad2247c06

d26a88bbbcfff4d62e

6152709e741c4d5a

5d793d35817b4c3d

E 20

17 satana.bin 5b063298bbd1670b4d39e

1baef67f854b8dcba9d

46bfd4f1d581d7c01

21d2b19a005d3df

L 20

18 services.exe 7cf0d257861a23191a9d48

2a51783593d6a64f74

d658a8c2fc7b2ad53

d1259741a09ee04

G 10

19 services.exe ff658a36899e43fec3966d6

08b4aa4472de7a378

71c85477df9347fe8

e7bc55768473fca

G 10

20 svchost.exe 1aae36311da414c8fd5b32

956aaed1d82237ab08

4f2340f0bd5b6365c

38e74dd391919a8

G 10

21 svchost.exe 4af001b3c3816b860660cf

2de2c0fd3c1dfb4878

54a47f6b5e09a77e

61649109c6a08866

G 10

22 teslacrypt 51b4ef5dc9d26b7a26e214

cee90598631e2eaa67

6e080aa085293bb9

fbdcc9015337d309

E 20

57

ID Name SHA1 MD5 Family Experiments

23 wannacry.exe 5ff465afaabcbf0150d1a3a

b2c2e74f3a4426467

84c82835a5d21bbcf

75a61706d8ab549

E 20

24 WinRAR.EXE 0d95c17831e9cd4d0d7efb

9efa866437eed186fd

b78d7b5d2fcbe117

1a3500cc2176f9c9

G 20

 TOTAL 380

Figure 12 shows the characteristics (highlighted in yellow) to generate the Phase initial;

dataset and additional features (enclosed in red ellipses) to produce the Phase analysis

dataset. It shows a subset of the data obtained from the reports and includes a list and

quantification of the characteristics analyzed. Table 11 lists the selected characteristics for

Phases initial (1) and analysis (2), with an observation explaining the selection criterion.

Author: Juan A. Herrera Silva

Figure 12. Features analyzed for the dataset using Cuckoo Sandbox in Phases Previous, Initial and

Analysis

58

Table 11. Selected characteristics Phases Initial and Analysis

Object Feature Criterion

Behavior regkey_opened This feature was taken because of the changes they make in the OS.

Phase initial.

Behavior regkey_read This feature was taken because of the changes they make in the OS.

Phase initial.

Behavior regkey_written This feature was taken because of the changes they make in the OS.

Phase initial.

Behavior processes This feature was taken because of the processes running on the OS.

Phase initial.

Procmemory files This feature was taken because of files created by memory processes.

Phase initial.

Procmemory URLs This feature was taken due to URLs created by memory processes. Phase

initial.

Network hosts This feature was taken due to the communication of hosts involved. Phase

initial.

Network request This feature was taken due to communication to domain servers

(requests). Phase initial.

Behavior file_created This feature was taken because of the files that are created by the artifact

in the OS. Phase Analysis.

Behavior dll_loaded This feature was taken because of the dlls that load the artifact during its

execution. Phase Analysis.

Behavior command_line This feature was taken because of the commands the artifact uses. Phase

Analysis.

Network domains This feature was taken because of the domains involved in communication.

Phase Analysis.

Network tcp This feature was taken due to network analysis of the tcp protocol. Phase

Analysis.

Network udp This feature was taken due to network analysis of the udp protocol. Phase

Analysis.

This study determined a set of candidate characteristics to elaborate the required dataset

from the original information obtained and carried out (without processing) data filtering.

The features taken into account come from different objects: procmemory, behavior, and

network. In turn, these objects contain a set of characteristics and nests of the same so-

called sub-characteristics.

 The object "procmemory" is characterized by creating logs about modifications in the

memory of infected devices and considering features such as memory dump files, URLs,

processes executed in memory, and memory regions affected among the most relevant.

This object's analysis sets the maximum and minimum number of memory dump files (dmp

files) with their process identifiers and the five artifacts used in the experiments.

59

We determined with this data that the ransomware that most generates dump files is

WannaCry. Simultaneously, it was observed that large quantities of URLs were also stored

with the same ransomware. The object called “network” characterizes ransomware’s

behavior concerning communication in the network (requests and protocols involved,

servers, domain names, and hosts that interact in communication). Because of this object's

analysis, the maximum and minimum number of IPs, domain names, and requests have

been made to set them. The attributes considered are hosts (IPs of hosts involved) and

claims (domain names of requests).

The "behavior" object characterizes ransomware behavior (triggered processes, library

calls, and invoked registry keys, among others). As a result of this object’s analysis, it was

set a maximum and a minimum number of affected records and processes executed by the

five types of ransomware samples. The attributes considered are open, read, and written

processes and registers.

The research gets the most representative average ransomware occurrence with the

selected features with ransomware and goodware artifacts as shown in Annex D. You can

see Figure 13 for the representation of average characteristics for ransomware as obtained

in the experiments for Phase analysis that produce this data.

60

Author: Juan A. Herrera Silva

Figure 13. Average characteristics

WannaCry ransomware affects victim systems in processes that involve registry keys. The

lists of the chosen features allow forming the dataset from identifiers of each list. The

dataset associates artifacts with processes, registry keys, memory dump files, URLs stored

in memory, and IPs of hosts involved in communication during ransomware attacks and

domain names. The details of each parameter (Phase initial y Phase analysis) and all

Annexes are publicly available at the following link:

https://drive.google.com/open?id=1vgOi2jchr_a0HrRhK1KOa6_UjuaczMaf.

https://drive.google.com/open?id=1vgOi2jchr_a0HrRhK1KOa6_UjuaczMaf

61

Phase Final

Table 12 lists the 40 artifacts used in Phase Final: goodware, encryptor, and locker. In this

table are also some observations about the behavior of goodware that could lead to an

erroneous detection as malware because they have behaviors similar to Ransomware. The

selected Ransomware is highlighted in yellow in Fig. 3. Ransomware evolution timeline.

Table 12. Artifacts used in Phase final

ID Artifact Family Comments

1 7Zip Goodware This goodware was selected due to its behavior related to

file encryption.

2 Task Manager (taskmgr) Goodware This goodware was selected due to its access to process

and system tasks.

3 API WINDOWS

SECURITY

CRYPTOGRAPHY (cipher)

Goodware This goodware was selected due to its operating system

file encryption behavior.

4 API WINDOWS SYSTEM

INFORMATION

REGISTRY (regedit)

Goodware This goodware was selected due to its interactions with the

registry keys.

5 API WINDOWS VOLUME

MANAGEMENT (diskpart)

Goodware This goodware was selected due to its access to disk

volumes and partitions.

6 Bitlocker Goodware This goodware was selected due to its ability to encrypt

disks and directories.

7 BitPaymer Encryptor BitPaymer allows cybercriminals to carry out a ransomware

and data theft attack at the same time as it has a feature to

remotely access the victim's files before encrypting them.

8 Cerber Encryptor This encryption ransomware was selected due to it

encrypts only specific files from the infected device. Leaves

additional ransom notes, such as an audio file that is

addressed aloud to the victim, both on the desktop of the

affected computer and inside encrypted folders.

9 cmd Goodware This goodware was selected due to its ability to execute

scripts and commands.

10 Cryptolocker Encryptor This encryption ransomware was selected due to it

encrypts only specific files from the infected device.

11 Cryptowall Encryptor This Ransomware (system blocker) was selected due to it

infiltrates the user's operating system through an infected

email message or a fraudulent download.

12 Crysis Encryptor Crysis ransomware uses brute force to infect computers.

13 dllhost Goodware This goodware was selected due to its access to dlls during

different stages of the software use (execution, installation).

62

ID Artifact Family Comments

14 Eris Encryptor ERIS renames all encrypted files and changes their

extensions to ".ERIS" and uses both Salsa20 and RSA-

1024 encryption.

15 Windows Remote Desk Goodware This goodware was selected due to its control interaction

when there are permissions.

16 GandCrab Encryptor GandCrab is a virus for rent for other cybercriminals to

spread attacks with it.

17 gpg Goodware This goodware was selected due to the execution of public

and private keys.

18 IPScan Goodware This goodware was selected because it allows scanning IP

addresses in several environments.

19 Locky Encryptor This ransomware was selected because it is distributed via

email or exploit kit with Microsoft Word attachment.

20 Maze Encryptor This ransomware threatens to leak information from

encrypted files, if the demanded ransom is not paid. It is

designed to attack Windows operating systems.

21 Microsoft SQL Server

Compact

Goodware This goodware was selected due to its use for database

management.

22 Nmap Goodware This goodware was selected because it allows different

scanning parameters such as open ports and IP

addresses, among others.

23 Petrwrap Locker PetrWrap, a variant of Petya that takes into account

WannaCry's Eternal Blue exploit

24 Petya Locker This ransomware was selected because overwrites the

main boot record of the infected computer

25 Phobos Encryptor This ransomware encrypts data to demand payment for

decryption. During the encryption process, files are

renamed according to this pattern: original file name,

unique ID assigned to victims, cybercriminals' email

address, and the extension ".iso" (not to be confused with

the format genuine ISO disc image)

26 Radamant Encryptor The ransomware encrypts data using AES-256 encryption

and the file extensions ".RDM" or ".RRK" are appended to

infected files. It spreads via spam email attachments,

corrupted links, fake advertisements and so on. (RaaS)

27 RansomX Encryptor This ransomware is used in targeted attacks against

government agencies and companies.

28 Ryuk Locker This ransomware encrypts the data on an infected system,

making the data on it inaccessible until a ransom is paid in

Bitcoin. It expressly seeks high-profile targets capable of

paying large sums, such as large public entities.

63

ID Artifact Family Comments

29 Satana Locker This ransomware encrypts files and prevents from starting

Windows (injects the same into TaskHost.exe) and starts

data encryption. (RaaS)

30 services Goodware This goodware was selected due to its interaction with

operating system services.

31 Sodinokibi Encryptor Sodinokibi ransomware exploits a vulnerability in Oracle

WebLogic to gain access to the target machine. Once

inside, the malware attempts to deploy itself with elevated

legal user rights to access all files as well as system

resources without restrictions.

32 STOP Encryptor This ransomware uses a combination of AES and RSA

algorithms to encrypt data and adds the .STOP file

extension.

33 svchost Goodware This goodware was selected because it checks the

operating system and is possibly the first victim of malware

attacks.

34 Team Viewer Goodware This goodware was selected due to its interaction with

remote control.

35 Teslacrypt Encryptor This ransomware is appeared as a threat targeted users to

computer games, now has several versions, and affects

many files

36 VNC Goodware This goodware was selected due to its interaction with

remote control.

37 WannaCry Encryptor WannaCry takes advantage of the vulnerability of the SMB

device sharing protocol

38 WhatsAppWeb Goodware This goodware was selected due to the use of encryption in

sending and receiving messages.

39 Winrar Goodware This goodware was selected due to the use of file and

directories encryption.

40 Wireshark Goodware This goodware was selected because it allows the

obtention of important information through a network using

pcap files.

In Phase final, 50 features were used, as shown in Figure 14, which shows the GUI of the

extraction tool generated in the present work. These characteristics are generated from the

.json file produced in the cuckoo sandbox using the application described in section 4.2 and

Annexes A and B. Phase final included Windows 10 as the platform and new threats and

goodware, as shown in Table 12.

64

Author: Juan A. Herrera Silva

Figure 14. Features for Phase final that are automatically generated.

Figure 15 shows the Phase final test environment network topology. In this configuration,

we have three machines; the first hosts cuckoo, the second CPU processes the models

with machine learning, and the third machine is responsible for storing logs (big data) and

artifacts for testing. Cuckoo communicates with an isolated virtual network for ransomware

processing and analysis composed of CPUs in five platforms (victims): Windows XP Service

Pack3, Windows 7 Ultimate, Windows 7 Professional, Windows 10 Enterprise and Windows

10 Professional. In this experimentation, the main 50 features selected for the generation

of the 12 Datasets were obtained and consequently the different learning models were

obtained.

65

Author: Juan A. Herrera Silva

Figure 15. Final Test environment network topology used in Phase Final

4.6. Balanced Dataset

The first dataset obtained consisted only of malware generated within the cuckoo sandbox.

For balancing data, goodware records were included to avoid bias for having an unbalanced

dataset with more malware than goodware records that could affect the classification when

using this data within machine learning algorithms.

The column named Objects represents the JSON file's main features created by the Cuckoo

Sandbox tool after analyzing artifacts (Ransomware or Goodware). The total number of

main objects is 15, each with nested features. The total number of features in the JSON file

is 326. Of these 326 characteristics, some have been chosen in Phases previous, initial and

analysis under the criteria explained in Table 11. In Phase final, 50 features are selected

(Figure 13) after several experiments with machine learning algorithms applied to diverse

combinations of attributes. This process is detailed in Annexes D and E, where the different

generated models are listed with their performance when using various combinations of

features for supervised machine learning (Annex E) and Neural Networks (Annex F), both

include detection times.

66

4.7. Machine Learning Algorithms

In this study, we tested machine learning algorithms for the generation of the models to

recognize ransomware, as shown in Table 13. For the generation of the machine learning

models, first, we used the RapidMiner tool15 and obtained models for the mentioned

algorithms as an approximation for evaluating performances. In Phase final, we took the

algorithms with the best performances and applied the Scikit-learn library and the Python

programming language with different parameters until the best results were obtained.

Table 13. Machine learning algorithms

ALGORITHM /

TECHNICAL
REFERENCES CHARACTERISTICS

Decision Tree [110], [111]

1. It is a classifier in the form of a tree structure that includes branch nodes

and leaf nodes

2. The decision tree is a supervised machine learning (ML) algorithm

commonly used in regression analysis and classification.

Neural networks [112]

Neural networks work similarly to a biological brain to recognize patterns of
large amounts of data. Multi-layer neural network algorithms received raw
data and performed internal processes to extract and select features. For
this reason, they had an embedded feature extraction and selection
process.

A simple neural network includes an input layer, an output layer with the
classified variables, and a hidden layer. The layers are connected and
form a network of neurons.

Fast Large Margin [113]

1. Quick learning method for high margin optimizations

2. It is based on the linear support vector learning scheme3. You can work

on a dataset with millions of examples and attributes

Generalized

Linear Model
[114]

1. GLMs are a class of models applied in cases where linear regression is

not applicable or does not make appropriate predictions.

2. It consists of three components:

2.1. Random component: an exponential family of probability

distributions;

2.2. Systematic component: a linear predictor; and

2.3. Link function: which generalizes the linear regression.

Gradient Boosted

Trees
[115], [116], [117]

This algorithm is based on an ensemble of decision trees to improve the
performance of each separate tree, considered individually as weak
learners. The algorithm applies gradient augmentation algorithms and
generates trees sequentially in a way that complements the errors of the
previous tree, and this model is not random.

Instead, it uses powerful pre-pruning. The trees combined their output
results in better models. In the case of regression, the final result is
generated from the average of all weak learners.

15 https://rapidminer.com/downloads/

67

ALGORITHM /

TECHNICAL
REFERENCES CHARACTERISTICS

Logistic

Regression
[118], [119]

1. the nominal attributes are transformed into numerical attributes

2. This algorithm is optimized for conditional probability.

Naive Bayes [119], [120]

This algorithm generates probabilistic models on target variables. It
assumes that input features are independent without pairwise correlation,
which is not entirely accurate in most cases. This assumption of
uncorrelated attributes makes this algorithm “naive”.

The name Bayes comes from the famous probabilistic theorem on which
this algorithm bases the generation of the probabilistic model.

Random Forest
[118], [119] ,

[121], [122], [123]

This algorithm is an ensembled method combining tree predictors so that
each tree depends on the values of an independently sampled random
vector and has the same distribution for all trees in the forest.

It can improve performance compared to independent decision trees.

The random forest algorithm uses a collection of decision trees to vote and

predict the input data class.

Support Vector

Machines
[122], [124]

1. It is a machine learning mechanism based on the concept of structural

risk minimization of the Statistical Learning Theory

2. Separate data points as much as possible

3. It is based on the concept of decision planes that define decision limits

Model Generation with Machine Learning Algorithms

Phases previous through analysis used RapidMiner to generate the machine learning

models. In Phase final, we used the Scikit-Learn library and Python programming language

to define each algorithm's parameters flexibly. Two particular variables are “estimators”

and “versions.” The estimator’s variable contains an array of integers listing the number of

trees to consider in each algorithm. This way, a Random Forest model and, a GBRT model

with five trees, another model with ten trees will be trained.

The “versions” variable allows assigning an identifier to each pair of models. The value '1'

will correspond to the first two models generated by the script, and the value '2' to the next

two. Then, the part that will be used for training and the part that will be used for evaluation

is obtained from the dataset. The “test_size” parameter denotes the percentage of the

dataset that will be taken for assessment. Also, the dataset for cross-evaluation is divided

into ten folds, with 10% of the dataset for testing and 90% for training, a process repeated

ten times to obtain performance scores that can be averaged. Using the results of the

precedent phases, we used the following machine learning algorithms: Random forest,

Gradient boosted regression trees, Gaussian Naïve Bayes, and Neural Networks.

68

Machine Learning Parameters for Phase Final

The class and parameters described below are used to generate each model for Phase

final since, in the other phases, we used a free version of RapidMiner that was useful as a

first approximation to the problem. However, with this tool, we did not specify personalized

parameters as in Python. In Phase final, we used the algorithms that yielded better

performances in the other phases and programmed them in Python. We implemented

Random Forest, Gradient Boosted Regression Trees, Neural Networks, and for

comparison, kept an algorithm with not that good performance for our problem: Gaussian

Naïve Bayes.

Once the models are developed, cross-validation is carried out with a total of 10 splits to

validate each model effectively. Once this validation is done, we obtain the metrics of

Precision, Recall, F1, and the confusion matrix to validate the results of each model.

Random Forest Parameters

For the generation of this model, the Python sklearn library was used. The

RandomForestClassifier class allows us to create models of the type Random Forest. The

following parameters were used to generate machine learning models with the Random

Forest algorithm:

 Estimators (5-100): The number of estimators varies from 5 to 100. A maximum of

one hundred has been defined to avoid overfitting.

 Criterion (gini): This function was used to measure the efficiency of each tree

division since it measures each node's impurity.

 Maximum Depth (none): A maximum depth was not defined due to the nature of the

data set and the available number of records used for model generation.

 The minimum number of records for node division (2): The default property of the

library was used since each record contains the necessary information to identify

each artifact.

 A minimum number of records in leaf nodes (1): This number is the minimum given

that it is enough for a record to be labeled as software of a particular type to have

the certainty of the prediction.

 A maximum number of features (auto): A maximum number of features to be

considered was not defined since they were manually selected for each dataset.

69

 A maximum number of leaf nodes (none): A maximum number of leaf nodes is not

defined due to the nature of the dataset.

 Number of jobs (none): A maximum of 1 job was used for a model generation

because there was no large dataset to consider parallel processing.

 Random state (6): This state allows for consistency between all the models

generated with all the datasets.

 A maximum number of records (None): Limiting the number of records for a model

generation was not desired.

Gradient Boosted Regression Trees Parameters

Like Random Forest models, sklearn allows us to generate GBRT models with the

GradientBoostingClassifier class.

 Estimators (5-100): The number of estimators varies from 5 to 100. A maximum of

one hundred has been defined to avoid overfitting.

 Learning Rate (0.1): It was decided to use the default value recommended by the

library since it presents favorable results.

 Subsample (1.0): Indicates the number of records each tree will use, so it was

decided to use all the records.

 Criterion (Friedman Mean Squared Error): It was decided to use the mse as the

quality criterion for each division within each tree since it is an improved version of

the standard Mean Squared Error criterion.

 A minimum number of records for node division (2): The default property of the

library was used since each record contains the necessary information to identify

each artifact.

 A minimum number of records in leaf nodes (1): This number is the minimum given

that it is enough for a record to be labeled as software of a specific type to have the

certainty of the prediction.

 Maximum Depth (none): A maximum depth was not defined due to the nature of the

data set and the available number of records used for model generation.

 Random state (6): This state allows for consistency between all the models

generated with all the datasets.

 A maximum number of features (auto): A maximum number of features to be

considered was not defined since they were manually selected for each dataset.

70

 A maximum number of leaf nodes (none): A maximum number of leaf nodes is not

defined due to the nature of the dataset.

 Tolerance (0.004): This tolerance measures the loss calculated between each

estimator. This value was used because it is the one recommended by the library.

Gaussian Naive Bayes Parameters

Like the previously mentioned models, sklearn allows us to generate GBRT models with the

GaussianNB class. Gaussian Naïve Bayes is a probabilistic classification model, as shown

in (7), which assumes that the features are independent. Even when this assumption is

invalid, the model works reasonably well in most cases.

𝑃(𝑐|𝑥) =
P(x|c)∗𝑃(𝑐)

P(x)
 (1)

Where:

 P(c|x) = Posterior probability

P(x|c) = Likelihood

P(c) = Class prior probability

P(x) = Predictor prior probability

In Phase final, we applied the default parameters to give flexibility to the algorithm because

if the prior probabilities of the classes are specified, the priors are not adjusted according to

the data.

Neural Networks Parameters

We used the Python programming language and the Tensorflow and Keras library for

Neural Networks to create artificial neural networks. The number of splits to be considered

for the cross-validation process is defined. The following variable defines the dataset to train

and save the models. The third variable is an array containing the metrics to consider when

evaluating the generated models and the optimizer used. In this case, the “Adam” optimizer

is used with a learning rate of 0.001 to get a good model precision and simultaneously

obtain a solution quickly.

71

Then there is another series of variables also used for the training and evaluating variables

where the architectures to be built are defined. The program will perform a permutation of

the activation functions, the number of neurons, and the number of layers of each model to

be generated.

There is also a function to encode the classes of the dataset. This output layer is necessary

for the artificial neural networks to predict the three categories we have in our research:

encryptor ransomware, locker ransomware, and goodware. Next, the models to be

generated are built, trained, and validated. A cross-validation process is executed, and each

trained model is saved. The parameters to use are:

 Activation functions: Commonly used functions were used to generate DL models

and that were available in the library of tensorflow. These are sigmoid, selu, relu and

tanh.

 Number of neurons: The number of neurons range from 25 to 300. Each layer of

each network will always have the same number of neurons defined for the model.

No permutations between quantities of neurons per layer to facilitate the process of

generating the Models. The maximum number of neurons is 300 to avoid overfitting.

 Number of layers: The models range from 1 layer to 4 layers. Increasing the number

of layers was also avoided due to the nature of the dataset.

 Learning Rate: A learning rate of 0.001 was used since it is the recommended by

several authors and, after experimentation, it was enough to obtain models with

good results.

 Epochs: Limited to a maximum of 20 epochs for all given models that the loss

between epochs during training did not vary from drastic way.

 Metrics: As with ML models, for DL models extracted Precision, Accuracy and

Recall. For the accuracy of the stage of training, the accuracy obtained in the last

epoch of each is taken into account model.

 Output function: softmax was used since it is recommended by various authors for

general problems.

Performance of the Classifiers

Our study evaluated the machine learning algorithms' performance using several metrics

listed below and a classifier's confusion matrix to calculate these metrics.

72

True positive rate (TPR) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2)

False positive rate (FPR) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (3)

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4)

 Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5)

 F − measure =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6)

 Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐸𝑃+𝐹𝑁
 (7)

Equations two to seven show the following descriptions: TP is a true positive representing

the number of ransomware samples classified correctly. TN is a true negative, meaning the

number of standard samples categorized accurately. FP is a false positive that represents

regular binaries incorrectly classified as ransomware. FN is a false negative that represents

ransomware incorrectly classified. TPR gives the predicted ransomware value correctly

classified as ransomware, while FPR gives the value of files incorrectly classified as

ransomware.

Precision defines the machine learning model's precision in categorizing relevant instances.

Recall establishes the ability to find pertinent instances of the data set. F-measure is the

harmonic mean of accuracy and recovery and estimates the given machine learning

model’s performance. The equations (two to seven) compute the performance of the

algorithms using five features. The same is done for the other combinations of

characteristics.

73

5. DATASET, MODELING, AND DEPLOYMENT

The dataset and its final features were applied to machine learning algorithms to detect

locker ransomware and encryptor ransomware to differentiate them from goodware. The

combination of characteristics used was the one that yielded the best algorithm

performances. This way, we detect this computer threat to minimize the damage that it can

cause. The work’s hypothesis was confirmed, and the objectives of this investigation were

achieved.

In this chapter, we will describe results obtained in the different phases to explain the

evolution of the research to get the Ransomware Features Dataset, the resulting datasets,

machine learning models generated with the final version of the dataset, and the

deployment using the best models.

5.1. Evolution of the Research to Obtain the Ransomware Features Dataset

It was mentioned that the present work had four phases (previous, initial, analysis and final).

In each stage, a dataset was generated using some of the features of the .json file obtained

after processing artifacts in the cuckoo file and adding goodware files. Each of the resulting

datasets was evaluated using machine learning algorithms. Table 14 summarizes the

features, artifacts, platforms, and the number of generated registers of the CSV dataset

generated in each phase.

Table 14. Relevant attributes of the datasets generated in each phase using specific artifacts and

platforms

Phase Selected features Artifacts Platforms Number of

registers of

the CSV

dataset file

Previous regwrite, regopen,

regread, proc,

pmfiles, pmurls,

nethosts, netrequest.

Cryptolocker,

Cryptowall, Petrwrap, Petya

, Wannacry

Windows XP,

Windows 7

6.783

Initial regwrite, regopen,

regread, proc,

pmfiles, pmurls,

nethosts, netrequest.

7-zipPortable_9.20_

Rev_2.paf.exe,

AdbeRdr11008_es_ES.exe,

AcroRdrDC1901220036_es_

ES.exe, cerber.exe,

chrome.exe,

cryptolocker.exe,

cryptowall.bin,

Windows XP,

Windows 7

47.959

74

Phase Selected features Artifacts Platforms Number of

registers of

the CSV

dataset file

dllhost.exe (W7),

dllhost.exe (WXP),

explorer.exe (W7),

explorer.exe (WXP),

firefox.exe, locky,

Petrwrap.exe, petya.bin,

radamant.ViR, satana.bin,

services.exe (W7),

services.exe (WXP),

svchost.exe (W7),

svchost.exe (WXP),

teslacrypt, wannacry.exe,

WinRAR.EXE.

Analysis regwrite, regopen,

regread, proc,

pmfiles, pmurls,

nethosts, netrequest,

file_created, dll_loaded,

command_line, udp, tcp,

domains

7-zipPortable_9.20_

Rev_2.paf.exe,

AdbeRdr11008_es_ES.exe,

AcroRdrDC1901220036_es_

ES.exe, cerber.exe,

chrome.exe,

cryptolocker.exe,

cryptowall.bin,

dllhost.exe (W7),

dllhost.exe (WXP),

explorer.exe (W7),

explorer.exe (WXP),

firefox.exe, locky,

Petrwrap.exe, petya.bin,

radamant.ViR, satana.bin,

services.exe (W7),

services.exe (WXP),

svchost.exe (W7),

svchost.exe (WXP),

teslacrypt, wannacry.exe,

WinRAR.EXE.

Windows XP,

Windows 7

62.989

Final family, proc_pid,

file, urls, type, name,

ext_urls, path, program,

info, families,

description, sign_name,

sign_stacktrace,

arguments, api, category,

imported_dll_count, dll,

pe_res_name, filetype,

7Zip, Task Manager

(taskmgr), API WINDOWS

SECURITY

CRYPTOGRAPHY (cipher),

API WINDOWS SYSTEM

INFORMATION REGISTRY

(regedit), API WINDOWS

VOLUME MANAGEMENT

(diskpart), Bitlocker,

Windows XP_SP3

Windows

7_Ultimate

Windows

7_Professional

Windows

10_Enterprise

Windows

10_Professional

1.424.344

75

Phase Selected features Artifacts Platforms Number of

registers of

the CSV

dataset file

pe_sec_name, entropy,

hosts, requests, mitm,

domains, dns_servers,

tcp, udp, dead_hosts,

proc, beh_command_line,

process_path, children,

tree_command_line,

tree_process_name,

command_line,

regkey_read, wmi_query,

directory_enumerated,

regkey_opened, log,

file_created, action,

dll_loaded, file_read,

regkey_written,

apistats, errors

BitPaymer, Cerber, cmd,

Cryptolocker, Cryptowall,

Crysis, dllhost, Eris, Windows

Remote Desk, GandCrab,

gpg, IPScan, Locky, Maze,

Microsoft SQL Server

Compact, Nmap, Petrwrap,

Petya, Phobos, Radamant,

RansomX, Ryuk, Satana,

services, Sodinokibi, STOP,

svchost, Team Viewer,

Teslacrypt, VNC, WannaCry,

WhatsAppWeb, Winrar,

Wireshark.

 family, proc_pid,

file, urls, type, name,

ext_urls, path, program,

info, families,

description, sign_name,

sign_stacktrace,

arguments, api, category,

imported_dll_count, dll,

pe_res_name, filetype,

pe_sec_name, entropy,

hosts, requests, mitm,

domains, dns_servers,

tcp, udp, dead_hosts,

proc, beh_command_line,

process_path, children,

tree_command_line,

tree_process_name,

command_line,

regkey_read, wmi_query,

directory_enumerated,

regkey_opened, log,

file_created, action,

dll_loaded, file_read,

regkey_written,

apistats, errors

7Zip, Task Manager

(taskmgr), API WINDOWS

SECURITY

CRYPTOGRAPHY (cipher),

API WINDOWS SYSTEM

INFORMATION REGISTRY

(regedit), API WINDOWS

VOLUME MANAGEMENT

(diskpart), Bitlocker,

BitPaymer, Cerber, cmd,

Cryptolocker, Cryptowall,

Crysis, dllhost, Eris, Windows

Remote Desk, GandCrab,

gpg, IPScan, Locky, Maze,

Microsoft SQL Server

Compact, Nmap, Petrwrap,

Petya, Phobos, Radamant,

RansomX, Ryuk, Satana,

services, Sodinokibi, STOP,

svchost, Team Viewer,

Teslacrypt, VNC, WannaCry,

WhatsAppWeb, Winrar,

Wireshark.

Windows XP_SP3

Windows

7_Ultimate

Windows

7_Professional

Windows

10_Enterprise

Windows

10_Professional

2.000

76

Experiments in Phases Initial and Analysis

This section will explain the processes in phases initial and analysis to obtain different

combinations of features to feed the machine learning algorithms to evaluate their

performance to establish the best possible configuration for the ransomware dataset. We

divided the dataset by a Split operator in 75% for training and 25% for testing.

Combination of Features

We applied feature engineering and produced different feature vectors as a combination of

characteristics. With these inputs, we evaluated processing times and algorithms’

performances. The combination spreadsheets refer to the number of non-repeatable

combinations made with the selected attributes to form the dataset and the number of

models generated for each combination. Also, the investigation has measured the time

necessary to get the models. This time is, on average, 4 hours. The number of combinations

must be multiplied by this number to obtain the time in hours and then divided by 24 to get

the time in days.

In the phase initial, it was chosen a total of 7 characteristics to form the dataset. Table 15

covers these considerations for the seven features. In the second phase, seven features

were added to the dataset for a total of 14. Table 16 shows the corresponding calculations.

The time that all models would finish with all the features is too high (24.574,5 days), so it

was decided to choose certain more significant features in the analysis. From stage 1, the

regkey_read feature was selected, which affects the application layer models’ prediction

behavior. With a broader network knowledge criterion, the UDP feature and the file feature

were also considered because they describe the action at the application layer level. With

these three characteristics added in one, the research obtained five factors to analyze.

Table 17 shows the necessary time for the calculations.

Table 15. Processing times for a combination of 7 characteristics

Combination # Combinations Without Repetition # Models

7 7 1 9

7 6 7 63

7 5 21 189

7 4 35 315

7 3 35 315

77

Combination # Combinations Without Repetition # Models

7 2 21 189

7 1 7 63

TOTAL 127 1143

 Time by a combination (Hours) 4

 TOTAL Time (Hours) 4572

 TOTAL Time (Days) 190.50

Table 16. Processing times for a combination of 14 characteristics

Combination # Combinations Without Repetition # Models

14 14 1 9

14 13 14 126

14 12 91 819

14 11 364 3276

14 10 1001 9009

14 9 2002 18018

14 8 3003 27027

14 7 3432 30888

14 6 3003 27027

14 5 2002 18018

14 4 1001 9009

14 3 364 3276

14 2 91 819

14 1 14 126

TOTAL 16383 147447

 Time by a combination (Hours) 4

 TOTAL Time (Hours) 589788

 TOTAL Time (Days) 24574.50

Table 17. Processing times for a combination of 5 characteristics

Combination # Combinations Without Repetition # Models

5 5 1 9

5 4 5 45

5 3 10 90

5 2 10 90

5 1 5 45

78

Combination # Combinations Without Repetition # Models

TOTAL 31 279

 Time by a combination (Hours) 4

 TOTAL Time (Hours) 1116

 TOTAL Time (Days) 46.50

In these phases, 279 learning models were processed in 60 days to obtain algorithm

analysis, results, and confusion matrices. The discussion includes comparative analysis.

Table 18 represents the combinations of characteristics used to generate the models. We

have marked these mixtures with an identifier to present the performance of the classifiers

to which these input vectors are applied. The comparison of performances for training is

shown in Table 19, which gives the accuracy percentages to predict the type of artifact

taken during model training.

Table 18. Nomenclature for the combination of characteristics

ID FEATURES

5F1 (regkey_read, udp, file_created), dll_loaded, comand_line, domain, tcp

4F1 (regkey_read, udp, file_created), command_line, domain, tcp

4F2 (regkey_read, udp, file_created), dll_loaded, command_line, domain

4F3 (regkey_read, udp, file_created), dll_loaded, command_line, tcp

4F4 (regkey_read, udp, file_created), dll_loaded, domain, tcp

4F5 dll_loaded, comand_line, domain, tcp

3F1 (regkey_read, udp, file_created), comand_line, domain

3F2 (regkey_read, udp, file_created), comand_line, tcp

3F3 (regkey_read, udp, file_created), dll_loaded, comand_line

3F4 (regkey_read, udp, file_created), dll_loaded, domain

3F5 (regkey_read, udp, file_created), dll_loaded, tcp

3F6 (regkey_read, udp, file_created), domain, tcp

3F7 comand_line, domain, tcp

3F8 dll_loaded, comand_line, domain

3F9 dll_loaded, comand_line, tcp

3F10 dll_loaded, domain, tcp

2F1 (regkey_read, udp, file_created), comand_line

2F2 (regkey_read, udp, file_created), dll_loaded

2F3 (regkey_read, udp, file_created), domain

2F4 (regkey_read, udp, file_created), tcp

2F5 comand_line, domain

2F6 comand_line, tcp

2F7 dll_loaded, comand_line

79

ID FEATURES

2F8 dll_loaded, domain

2F9 dll_loaded, tcp

2F10 domain, tcp

1F1 (regkey_read, udp, file_created)

1F2 comand_line

1F3 dll_loaded

1F4 domain

1F5 tcp

Table 19. Comparison of performances with different algorithms in the training dataset

Figure 16 presents graphs with the comparison of the training dataset sheet. These graphs

help establish which algorithm and features perform better by pinpointing a type of artifact.

Author: Juan A. Herrera Silva

Figure 16. Comparison of performance of the algorithms over the training dataset – Phase Analysis

Model 5F1 4F1 4F2 4F3 4F4 4F5 3F1 3F2 3F3 3F4 3F5

Naive Bayes 83,29% 83,23% 83,28% 82,77% 83,25% 60,01% 83,22% 82,71% 82,77% 83,22% 82,71%

Generalized Linear

Model 69,40% 69,87% 69,27% 68,89% 69,50% 59,75% 69,70% 69,14% 68,84% 69,18% 68,92%

Logistic Regression 69,34% 69,77% 69,00% 68,62% 69,28% 59,74% 69,60% 68,92% 68,60% 68,93% 68,63%

Fast Large Margin 75,87% 75,85% 75,76% 74,96% 75,85% 59,60% 75,71% 74,91% 74,98% 75,65% 74,85%

Neural Networks 98,26% 98,34% 98,31% 97,13% 98,36% 60,68% 98,31% 97,11% 97,01% 98,24% 97,05%

Decision Tree 98,09% 98,09% 98,09% 98,09% 98,09% 61,50% 98,09% 98,09% 98,09% 98,09% 98,09%

Random Forest 93,18% 94,46% 94,33% 94,17% 94,97% 61,51% 96,69% 98,16% 97,30% 96,33% 97,96%

Gradient Boosted Trees 99,73% 99,72% 99,73% 98,48% 99,72% 61,49% 99,72% 98,48% 94,48% 99,74% 98,48%

Support Vector Machine 63,18% 62,55% 64,49% 64,30% 66,58% 58,65% 61,12% 62,46% 65,07% 64,07% 64,00%

80

The comparison of testing datasets presents the accuracy percentages to predict the artifact

during model testing. There is a relationship between the parameters chosen and the

models used. Table 20 indicates the performance of the different algorithms over the testing

dataset.

Table 20. Comparison of performance of the algorithms over the testing dataset

Comparison of testing results

Figure 17 presents graphs associated with comparing the algorithms over the testing

datasets. These graphs help establish which algorithm performs best in the generation of

the models and with which features pinpoint the prediction of a type of artifact.

Model 5F1 4F1 4F2 4F3 4F4 4F5 3F1 3F2 3F3 3F4 3F5

Naive Bayes 83.39% 83.30% 83.39% 82.81% 83.32% 59.83% 83.31% 82.74% 82.85% 83.30% 82.76%

Generalized

Linear Model 69.09% 69.48% 68.93% 68.62% 69.14% 59.44% 69.39% 68.96% 68.62% 68.83% 68.65%

Logistic

Regression 52.29% 52.25% 52.27% 52.30% 52.29% 58.03% 52.25% 52.27% 52.27% 52.29% 52.29%

Fast Large

Margin 75.31% 75.23% 75.24% 74.56% 75.26% 59.36% 75.16% 74.47% 74.61% 75.07% 74.38%

Neural

Networks 98.06% 98.00% 98.18% 96.45% 98.07% 60.60% 98.26% 96.53% 96.85% 98.16% 96.18%

Decision Tree 98.05% 98.05% 98.05% 98.05% 98.05% 61.27% 98.05% 98.05% 98.05% 98.05% 98.05%

Random

Forest 92.88% 93.06% 96.89% 92.90% 96.89% 61.30% 98.22% 98.06% 98.05% 98.22% 98.23%

Gradient

Boosted

Trees 99.68% 99.68% 99.67% 98.38% 99.68% 61.27% 99.67% 98.38% 98.38% 99.68% 98.38%

Support

Vector

Machine 65.39% 62.75% 59.72% 59.79% 62.24% 58.77% 66.71% 58.55% 68.99% 60.99% 64.96%

81

Author: Juan A. Herrera Silva

Figure 17. Comparison of performance of the algorithms over the testing dataset – Phase Analysis

Table 21. Performance of the classifiers using five features over the training dataset

(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp)

Model Accuracy Precision Recall
Classification

Error

Naive Bayes 83.29% 69.96% 57.63% 16.71%

Generalized Linear Model 69.40% 47.06% 44.86% 30.60%

Logistic Regression 69.34% 46.93% 44.84% 30.66%

Fast Large Margin 75.87% 59.99% 48.65% 24.13%

Neural Networks 98.26% 98.76% 95.32% 1.74%

Decision Tree 98.09% 97.86% 97.06% 1.91%

Random Forest 93.18% 96.55% 65.40% 6.82%

Gradient Boosted Trees 99.73% 99.83% 98.47% 0.27%

Support Vector Machine 63.18% 53.49% 37.16% 36.82%

Table 22. Performance of the classifiers using five features over the testing dataset

(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp)

Model Accuracy Precision Recall
Classification

Error

Naive Bayes 83.39% 68.15% 57.86% 16.61%

82

(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp)

Generalized Linear

Model 69.09% 46.99% 44.69% 30.91%

Logistic Regression 52.29% 40.68% 38.79% 47.71%

Fast Large Margin 75.31% 56.52% 48.31% 24.69%

Neural Networks 98.06% 98.78% 94.71% 1.94%

Decision Tree 98.05% 97.70% 96.86% 1.95%

Random Forest 92.88% 96.39% 65.28% 7.12%

Gradient Boosted

Trees 99.68% 99.81% 98.11% 0.32%

Support Vector

Machine 65.39% 54.31% 39.34% 34.61%

Our study considers the algorithms specified at the beginning of this section, as shown in

Tables 21 and 22. Tables 23 through 26 present the performance of the classifiers using

different combinations of features both in training and testing. The Gradient Boosted Trees

algorithm has better accuracy during the training process with 99.73%, and the testing

process has 99.68%.

Table 23. Performance of the classifiers using a combination of four features in training and testing

Characteristics

Algorithm /

Model

Accuracy

training

Precision

training

Recall

training

Classification

Error Training

Accuracy

testing

Precision

testing

Recall

testing

Classification

Error testing

(regkey_read,

udp,

file_created),

command_line,

domain, tcp

Gradient

Boosted

Trees

99.72% 99.80% 98.48% 0.28% 99.68% 99.81% 98.11% 0.32%

(regkey_read,

udp,

file_created),

dll_loaded,

command_line,

domain

Gradient

Boosted

Trees

99.73% 99.82% 98.48% 0.27% 99.67% 99.81% 98.11% 0.33%

(regkey_read,

udp,

file_created),

dll_loaded,

domain, tcp

Gradient

Boosted

Trees

99.72% 99.81% 98.48% 0.28% 99.68% 99.81% 98.11% 0.32%

(regkey_read,

udp,

file_created),

dll_loaded,

command_line,

tcp

Gradient

Boosted

Trees

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62%

dll_loaded,

comand_line,

domain, tcp

Random

Forest

61.51% 86.72% 36.71% 38.49% 61.30% 86.67% 36.86% 38.70%

83

Table 24. Performance of the classifiers using a combination of three features in training and testing

Characteristics

Algorithm /

Model

Accuracy

 training

Precision

training

Recall

training

Classification

Error training

Accuracy

testing

Precision

testing

Recall

testing

Classification

Error testing

(regkey_read,

udp,

file_created),

comand_line,

domain

Gradient

Boosted

Trees

99.72% 99.82% 98.48% 0.28% 99.67% 99.81% 98.11% 0.33%

(regkey_read,

udp,

file_created),

comand_line,

tcp

Gradient

Boosted

Trees

98.48% 99.12% 97.37% 1.52% 98.38% 99.10% 96.94% 1.62%

(regkey_read,

udp,

file_created),

dll_loaded,

comand_line

Gradient

Boosted

Trees

94.48% 99.12% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62%

(regkey_read,

udp,

file_created),

dll_loaded,

domain

Gradient

Boosted

Trees

99.74% 99.82% 98.48% 0.27% 99.67% 99.81% 98.11% 0.33%

(regkey_read,

udp,

file_created),

dll_loaded, tcp

Gradient

Boosted

Trees

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62%

(regkey_read,

udp,

file_created),

domain, tcp

Gradient

Boosted

Trees

99.72% 99.80% 98.48% 0.28% 99.68% 99.81% 98.11% 0.32%

comand_line,

domain, tcp

Random

Forest
61.35% 86.24% 36.54% 38.65% 61.14% 86.63% 36.72% 38.86%

dll_loaded,

comand_line,

domain

Random

Forest

61.39% 86.69% 36.23% 38.61% 61.17% 83.23% 36.39% 38.83%

dll_loaded,

comand_line,

tcp

Random

Forest

59.85% 86.10% 35.21% 40.15% 59.64% 86.42% 35.23% 40.36%

dll_loaded,

domain, tcp

Random

Forest
61.52% 86.81% 36.73% 38.48% 61.30% 86.67% 36.86% 38.70%

Table 25. Performance of the classifier using a combination of two features in training and testing

Characteristics

Algorithm /

Model

Accuracy

training

Precision

training

Recall

training

Classification

Error training

Accuracy

testing

Precision

testing

Recall

testing

Classification

Error testing

(regkey_read,

udp,

file_created),

comand_line

Gradient

Boosted

Trees

98.47% 99.12% 97.37% 1.53% 98.38% 99.10% 96.94% 1.62%

84

Characteristics

Algorithm /

Model

Accuracy

training

Precision

training

Recall

training

Classification

Error training

Accuracy

testing

Precision

testing

Recall

testing

Classification

Error testing

(regkey_read,

udp,

file_created),

dll_loaded

Gradient

Boosted

Trees

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62%

(regkey_read,

udp,

file_created),

domain

Gradient

Boosted

Trees

99.72% 99.82% 98.48% 0.28% 99.67% 99.81% 98.11% 0.33%

(regkey_read,

udp,

file_created),

tcp

Gradient

Boosted

Trees

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62%

comand_line,

domain

Random

Forest
61.09% 85.94% 35.95% 38.91% 60.84% 83.00% 36.09% 39.16%

comand_line,

tcp

Random

Forest
59.69% 85.61% 35.07% 40.31% 92.88% 96.39% 65.28% 7.12%

dll_loaded,

comand_line

Random

Forest
59.64% 85.68% 34.56% 40.36% 59.41% 81.38% 34.68% 40.59%

dll_loaded,

domain

Random

Forest
61.39% 86.08% 36.23% 38.61% 61.16% 82.39% 36.38% 38.84%

dll_loaded, tcp

Random

Forest
59.85% 85.37% 35.24% 40.15% 59.65% 85.33% 35.33% 40.35%

domain, tcp

Gradient

Boosted

Trees

61.36% 85.83% 36.54% 38.64% 61.13% 86.72% 36.57% 38.87%

Table 26. Performance of the classifiers using one feature in training and testing

Characteristics

Algorithm /

Model

Accuracy

training

Precision

training

Recall

training

Classification

Error training

Accuracy

testing

Precision

testing

Recall

testing

Classification

Error testing

(regkey_read,

udp,

file_created)

Gradient

Boosted

Trees

98.47% 99.12% 97.37% 1.53% 98.38% 99.10% 96.94% 1.62%

comand_line

Random

Forest
59.26% 85.30% 34.14% 40.74% 59.02% 71.72% 34.10% 40.98%

dll_loaded

Random

Forest
59.63% 84.74% 34.52% 40.37% 59.42% 81.38% 34.68% 40.58%

domain

Gradient

Boosted

Trees

60.97% 80.67% 35.51% 39.03% 60.71% 76.52% 35.58% 39.29%

Tcp

Random

Forest
59.69% 85.25% 35.07% 40.31% 59.47% 86.08% 35.03% 40.53%

To achieve a contextual view of our experiments’ findings, we present the best results for

accuracy, using selected features, for training and testing during Phase initial and analysis,

from Table 27 through 30. Tables 27 and 28 below show the best accuracy using different

85

algorithms and considering the features that improve the classifiers’ performance in Phase

initial.

Table 27. Best accuracy in training (Phase initial)

Algorithm Best

Accuracy

training

Number

Of

Features

Features

Naive Bayes 77,82% 8 Regkey_written, regkey_

opened, regkey_read,

processes, files, URLs,

hosts, requests

Gradient Boosted Trees 91,10% 7 Regkey_written, processes,

files, URLs, requests,

regkey_opened,

regkey_read

Neural Networks 79,07% 6 Regkey_written,processes,

file, URLs, hosts,

regkey_opened

Neural Networks 89,27% 5 Files, URLs, hosts, requests,

regkey_read

Gradient Boosted Trees 90,13% 4 Processes, files, URLs,

regkey_read

Gradient Boosted Trees 93,14% 3 Regkey_written, processes,

regkey_read

Neural Networks 91,42% 2 Processes, regkey_read

Support Vector Machine 95,38% 1 Regkey_read

Table 28. Best accuracy in testing (Phase initial)

Algorithm Best

Accuracy

testing

Number Of

Features

Features

Naive Bayes 76,88% 8 Regkey_written, regkey_opened,

regkey_read, processes,files, URLs,

hosts, requests

Neural Networks 88,82% 7 Regkey_written, processes, files,

URLs, requests, regkey_opened,

regkey read

Fast Large Margin 73,56% 6 Regkey_written, processes, file,

URLs, hosts, regkey_opened

Support Vector Machine 86,98% 5 Files, URLs, hosts, requests, regkey

read

Gradient Boosted Trees 80,68% 4 Processes, files, URLs, regkey, read

86

Algorithm Best

Accuracy

testing

Number Of

Features

Features

Gradient Boosted Trees 93,14% 3 Regkey_written, processes,

regkey_read

Neural Networks 89,43% 2 Processes, regkey_read

Random Forest 80,58% 1 Regkey_read

Tables 28, 29 and 30 show the algorithm's performance that obtained the best accuracy

using different combinations of features, including a grouping of various features. It can be

observed that performance was improved with the use of new features in this phase.

Table 29. Best accuracy in training (Phase analysis)

Algorithm Best

Accuracy

Training

Number Of

Features

Features

Gradient Boosted

Trees

99,73% 5 (regkey_read, udp,

file_created), dll_loaded,

command_line, domain, tcp

Gradient Boosted

Trees

99,73% 4 (regkey_read, udp,

file_created),

command_line, domain, tcp

Gradient Boosted

Trees

99,73% 4 (regkey_read, udp,

file_created), dll_loaded,

command_line, domain

Gradient Boosted

Trees

99,73% 4 (regkey_read, udp,

file_created), dll_loaded,

domain,tcp

Gradient Boosted

Trees

99,74% 3 (regkey_read, udp,

file_created),

dll_loaded,domain

Gradient Boosted

Trees

99.74% 2 (regkey_read, udp,

file_created), domain

Gradient Boosted

Trees

98,48% 1 (regkey_read, udp,

file_created)

87

Table 30. Best accuracy in testing (Phase analysis)

Algorithm Best

Accuracy

testing

Number Of

Features

Features

Gradient Boosted

Trees

99,68% 5 (regkey_read, udp,

file_created), dll_loaded,

command_line, domain, tcp

Gradient Boosted

Trees

99,68% 4 (regkey_read, udp,

file_created),

command_line, domain, tcp

Gradient Boosted

Trees

99,68% 4 (regkey_read, udp,

file_created), dll_loaded,

command_line, domain

Gradient Boosted

Trees

99,68% 3 (regkey_read, udp,

file_created), dll_loaded,

domain

Gradient Boosted

Trees

99,67% 2 (regkey_read, udp,

file_created),domain

Gradient Boosted

Trees

98,38% 1 (regkey_read, udp,

file_created)

Table 31 presents the classification reports for all the machine learning considered

algorithms, i.e., the table shows data for True Positive Rate (TPR), False Positive Rate

(FPR), Accuracy, Precision, recall, and Classification Error.

Table 31. Training and testing classification reports

Features: (regkey_read, udp, file_created), dll_loaded, domain

Training dataset

Model TPR 1 TPR 2 FPR 1 FPR 2 Accuracy Precision Recall

Classification

Error

Naive Bayes 0.9511 0.7296 0.8367 0.8282 83.22% 69.69% 57.50% 16.78%

Generalized

Linear Model 0.8965 0.4417 0.6814 0.7284 69.18% 47.00% 44.61% 30.82%

Logistic

Regression 0.8935 0.4395 0.68 0.7211 68.93% 46.71% 44.43% 31.07%

Fast Large

Margin 0.9964 0.4573 0.7088 0.9877 75.65% 56.55% 48.46% 24.35%

Neural Networks 0.9946 0.9708 0.9783 0.8383 98.24% 98.55% 95.85% 1.76%

Decision Tree 0.9997 0.9534 0.9712 0.9995 98.09% 97.86% 97.06% 1.91%

Random Forest 1 0.9352 0.9415 0.9999 96.33% 98.09% 87.50% 3.67%

Gradient Boosted

Trees 0.9999 0.9975 0.9956 0.9997 99.74% 99.82% 98.48% 0.27%

88

Support Vector

Machine 0.9925 0.15 0.6229 0.9269 64.07% 49.69% 38.08% 35.93%

Testing dataset

Model TPR 1 TPR 2 FPR 1 FPR 2 Accuracy Precision Recall

Classification

Error

Naive Bayes 0.9518 0.7347 0.8362 0.8329 83.30% 68.53% 57.78% 16.70%

Generalized

Linear Model 0.8983 0.4343 0.6767 0.7297 68.83% 46.89% 44.42% 31.17%

Logistic

Regression 0.4308 0.7282 0.7167 0.4195 52.29% 39.39% 38.78% 47.71%

Fast Large

Margin 0.9967 0.4468 0.7029 0.9885 75.07% 56.39% 48.12% 24.93%

Neural Networks 0.9929 0.9717 0.9791 0.9844 98.16% 98.62% 95.90% 1.84%

Decision Tree 0.9998 0.953 0.9709 0.9993 98.05% 97.70% 96.86% 1.95%

Random Forest 0.9999 0.9574 0.9707 0.9998 98.22% 99.02% 97.06% 1.78%

Gradient Boosted

Trees 0.9998 0.9977 0.9948 0.9995 99.68% 99.81% 98.11% 0.33%

Support Vector

Machine 1 0.615 0.6008 1 60.99% 53.36% 35.38% 39.01%

Datasets for Phases Initial and Analysis are included in Annexes M and N, respectively.

5.2. Final Datasets of Features of Ransomware corresponding to Phase Final

For the construction of the final dataset, it is necessary to have a series of analyses of

Ransomware and Goodware artifacts so that the information can be extracted from the

information collected regarding the behavior of these artifacts. This analysis execution also

takes much time since it is required to perform a dynamic analysis of several artifacts for as

long as possible to collect all possible information about their behavior within different

environments. Annex L shows the use of CPU and memory resources of different artifacts

in the used platforms.

The results compile two thousand dynamic analyses with the cuckoo sandbox tool, including

twenty non-malicious artifacts or goodware and twenty ransomware-type malicious

artifacts. We used the same number of ransomware and goodware artifacts to build a

balanced dataset. For balance, it is necessary to have the same number of samples for

each class. The dataset was split for cross-evaluation, i.e., ten folds with 10% of the dataset

89

for testing and 90% for training, a process repeated ten times to obtain performance scores

that can be averaged. Table 11 lists the artifacts that were considered for that analysis. The

following platforms were considered (Figure 14):

• Windows XP Service Pack 3

• Windows 7 Ultimate

• Windows 7 Professional

• Windows 10 Enterprise

• Windows 10 Professional

Each artifact was analyzed ten times for each selected operating system to collect all

possible information that can be recorded within different environments. This way, we have

the results of fifty dynamic analyses (json files) for each artifact. As a total of forty artifacts

were listed, this results in a total of two thousand executed analyzes from which the json

files with the information of each analysis will be taken to build the respective data set.

Dataset Global from Phase Final

The information of the dataset is taken from the json files generated in the sandbox. The

extraction tool explained in 4.2 allows extracting any number of features from each json

generated by an artifact. For instance, if we need to get information for one specific

characteristic such as “udp” that corresponds to the connections established through UDP

during dynamic analysis, this feature is contained within an object called “network”. It can

be observed that this feature does not have one register but multiple rows of information. It

is a list of objects.

The extraction tool accedes to this list's content and saves each record in a row within the

dataset, as shown in Figure 18.

90

Author: Juan A. Herrera Silva

Figure 18. Dataset rows corresponding to an ‘UDP’ feature of an artifact.

The same process is applied to extract the rest of the features from the artifact’s json file,

which is saved in a CSV file. This process is carried out in this stage for different

combinations of characteristics. Each corresponding dataset is evaluated with machine

learning algorithms to obtain the optimal number of combination of attributes to generate

high-performance models.

As described in detail in Annex C the main objects such as: info, procmemory, target,

extracted, buffer, network, signatures, static, dropped, behavior, debug, and their respective

characteristics, which are present in a .json file. There are a total of 326 features, of which

a sweep was made of all of them, reviewing their behavior, what they represented and their

main occurrence in the JSON file. Highlighted in yellow are the main features that were

selected for their behavior as Ransomware in the pre-, initial and analysis phases. For the

final phase, the features highlighted in light blue and purple were selected, giving a total of

64 features selected with an engineering procedure. Once the features have been

extracted with the tool developed in this work, 64 dynamic features are selected. According

to the analysis, these are the features related to ransomware.

These characteristics extracted for the different artifacts form a matrix that is used to select

the most relevant ones using the Mutual Information Matrix method that allows us to detect

if a pair of attributes has a high correlation that would lead us to conclude that the

information is redundant. In that case, we will choose only one of them. The threshold

considered is a 75% pair-wise correlation between attributes.

X and Y are a pair of features with a joint probability mass function p(x,y) and marginal

probability mass function p(x) and p(y). The mutual information matrix M(X, Y) is the relative

91

entropy considering the joint distribution and the product of the marginal distribution as

presented in the equation. [131]

 MI(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋 (8)

After which, an automatic feature selection method was used, which is the Mutual

Information Matrix and it can be seen which features have a high correlation with each other

and these features that are more correlated are the ones that can be removed for selection.

So, using this criterion we removed 14 features and worked with the final 50 features for

modeling, since they have to do with the behavior of ransomware and have relevance

because they are not redundant, since they are not related to others. After this process,

the 50 features of the final dataset were obtained.

This process is carried out in this stage for different combinations of characteristics. Each

corresponding dataset is evaluated with machine learning algorithms to obtain the optimal

number y combination of attributes to generate high-performance models.

Modeling Results with the Dataset Global

Annexes E and F present this process for several feature combinations and their

corresponding algorithms’ performances for supervised and Neural Networks, including

detection times (Runtimes). With this data, the author selected 50 features that yield the

best results because they are related to the typical behavior of the analyzed artifacts. We

have 50 attributes, 40 artifacts, and ten experiments for each artifact in five victim’s device,

giving a total of 2000 json files. Because each json file has several rows, this first dataset

generated in Phase final has 1’424.344 registers after a cleaning procedure to eliminate

redundant rows (Dataset Global).

The previous phases established that the algorithms that produce the best performances

are Random Forest and Gradient Boosted Regression Trees. Also, Gaussian Naive Bayes

and Neural Networks were included in this experimentation, although the yields are lower

with these algorithms. The modeling results for this dataset are presented in Table 31 and

Annex G, including detection times (Runtimes), which contains the logs for the generation

of the models for Phase final, Dataset Global using supervised algorithms.

In Annex H are detailed the results for the different models obtained with Neural Networks,

including detection times (Runtimes), several configurations of layers, and the number of

92

neurons in each layer. The best configuration results for 3 layers with 200 neurons, sigmoid

activation, and softmax output functions are also shown in Table 32. For Random Forest

and Gradient Boosted Regression Trees, the best results, without overfitting, are obtained

for 100 estimators, i.e., trees in the forest. G, E, and L mean Goodware, Encryptor, and

Locker. Gradient Boosted Regression Trees is the algorithm with the best performance,

but its processing time is around four hours, which makes it challenging to deploy for the

operation cycle.

The metrics used to evaluate the performance of the machine learning algorithms are

accuracy, precision, recall, and F1.

Table 32. Performance results for Dataset Global from Phase Final

Algorithm Average

ten-fold

cross-

validation

Accuracy

Precision (%) Recall (%) F1 (%) Processing

time

(segs.)
G E L G E L G E L

Random

Forest

99.0 87.40 99.40 96.98 91.11 99.28 93.43 89.25 99.34 85.15 5193.67

Gradient

Boosted

Regression

Trees

98.00 83.00 98.85 98.98 85.19 99.07 90.37 84.08 98.96 94.48 14755.79

Gaussian

Naive

Bayes

89.00 46.08 92.98 16.47 40.38 96.16 07.19 43.04 94.54 1.00 76.50

Neural

Networks

91.92 92.31 90.55 92.12 2804.61

93

Figure 19. Ten-fold cross-validation accuracy results obtained in Dataset Global from Phase Final.

The Dataset Global generated in Phase final is included in Annex O.

For choosing the best option, we generated datasets for 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, and 50 features. The best results were obtained for 50 features, as shown in Annex

K for supervised learning and Annex J for Neural Networks, both include detection times

(Runtimes). Therefore, we choose 50 features for this final dataset.

Dataset Extract from Phase final

The results with the dataset shown in the previous section are satisfactory. However, the

file size of this dataset produces longer processing times and is neither portable nor efficient

to be implemented in the deployment stage. For this reason, the previous dataset was

processed to obtain one row for each json file corresponding to an artifact.

For constructing this new dataset used for the generation of machine learning models, we

start from the extraction of the previously described JSON content. The following image

shows an example the information extracted from a single artifact analyzed, as seen in

Figure 20.

94

Author: Juan A. Herrera Silva

Figure 20. Information for a single artifact

95

A matrix is created where the columns correspond to each of the characteristics extracted

from the analyzed artifact. This way, all the information collected throughout the analysis is

grouped. Once this is done, the number of records by columns is counted. A cell with the

value “N/A” is not counted. If it has a value other than "N/A," it is calculated. Taking the

previous image as an example, the result of the accounting for the artifact in question

produces a unique vector. The number of registers for each column in the considered

categories is found in each cell.

We proceed to do this with the two thousand experiments of which we have the reports,

and we obtain a matrix where each row has information about an artifact, and each row cell

corresponds to a feature of that artifact. This process produces a matrix of 2000 rows and

50 columns. This dataset generates the models using machine learning algorithms and is

included in Annex P.

Modeling Results with the Dataset Extract

For the machine learning algorithms, we used the parameters specified in section 4.6, which

are the ones that produce the best performances. For Random Forest and Gradient

Boosted Trees, it is shown the performances for 100 estimators or trees. For Neural

Networks, all the models have high performances. We chose one similar to the parameters

used for Neural Networks for Dataset Global of Phase final, i.e., with three layers, 100

neurons in each. See Table 33.

 However, we selected SELU as an activation function in this case because it runs a little

faster. Annex J and K show the complete log with all the experiments for different numbers

of attributes and several estimators' values for supervised and Neural Networks.

Table 33. Performance of the classifiers using Dataset Extract for Phase Final

Algorithm Average

ten-fold

cross-

validation

Accuracy

Precision (%) Recall (%) F1 (%) Processing

time

(segs.)
G E L G E L G E L

Random

Forest

100 99.86 100 100 100 99.831 100 99.93 99.91 100 3.9

Gradient

Boosted

Regression

Trees

100 99.74 100 100 100 99.66 100 99.86 99.98 100 25.47

96

Algorithm Average

ten-fold

cross-

validation

Accuracy

Precision (%) Recall (%) F1 (%) Processing

time

(segs.)
G E L G E L G E L

Gaussian

Naive

Bayes

74.00 71.11 88.86 52.43 93.62 58.03 38.29 80.83 70.21 4.26 0.15

Neural

Networks

99.8 99.8 99.8 99.8 6.99

Figure 21. Ten-fold cross-validation accuracy using the Dataset Extract from Phase Final.

The best results are obtained with the second dataset, as seen in Figure 21. Also,

processing times for the model obtaining are significantly lower than with the previous

dataset. Again, the best performance algorithms are Random Forest and Gradient Boosted

Regression Trees, and slightly lesser values were obtained using Neural Networks with

three layers with 100 neurons each. Bayes reduces performance values from 89 obtained

in Dataset Global to 74 obtained with the Dataset Extract for 10-fold cross-validation

accuracy.

5.3. Deployment

The prediction of new artifacts requires generating a csv file with the previously described

tool. Once you have the corresponding csv file, we use the ml_predictor.py and

dl_predictor.py programs to make predictions with any generated models, whether in the

97

repository or not. The content of these files is concise enough to change the directories of

csv files and models to execute the deployment.

Our architecture allows analyzing the behavior of an artifact since it is created in a file

system. It considers the sandbox environment for the dynamic analysis of an artifact, the

information extraction tool obtained from the analysis, and the machine learning models to

be used to classify the analyzed artifact, as shown in Figure 22.

98

Author: Juan A. Herrera Silva

Figure 22. Deployment architecture

99

The process of analyzing an artifact by deploying the models is detailed below:

1. A file is introduced into the computer, for example, through a network.

2. Using a Powershell script, the introduction (creation) of the file to the file system of the

operating system is detected.

3. Using the Powershell script, the client opens a WebSocket-type connection with the

server and proceeds to send the file in question.

4. Once it has received the entire file, the server starts the dynamic analysis process using

the cuckoo sandbox tool.

5. After completing the dynamic analysis process, Cuckoo Sandbox collects all the

information and saves it in a file in json format.

6. Once the creation of this file is detected, a variation of the information extraction tool is

used to extract the relevant information that will serve as input for the machine learning

models.

7. Once the information has been extracted, the feature vector is built and sent to one of

the previously trained machine learning models to obtain the classification (prediction) of

the analyzed file.

8. The classification (prediction) provided by the model is sent through the WebSocket

connection to the client to take actions depending on whether it is Ransomware or not.

Repository Content

Inside the repository, there are two folders:

1. The filter folder contains the source code of the information extraction tool and the

dataset generated under which the Machine Learning and Neural Networks models were

developed. This folder has the following files:

• filter.py: Source code of the program in charge of extracting the information from one

or more json files obtained with cuckoo.

100

• gui.py: Source code of the graphical interface that invokes the methods of the file

filter.py

• simplified_dataset_shuffled.csv: The dataset was built from the extraction of

information from the two thousand JSON files obtained in the initial

experimentation

2. Machine Learning directory that contains two folders for Machine Learning and Neural

Networks Logs.

Machine Learning - Logs:

 Logs_ML.xslx: This file contains a table with information regarding the generated

Machine Learning models and the results obtained.

 my_dataset_ml.txt: This file contains more information about each of the generated

models.

 Models: This folder contains the generated machine learning models that can be

used in conjunction with the files to predict new artifacts.

 ml_predictor.py: Python script that can be used to classify new artifacts.

Neural Networks - Logs:

 Logs_DL_NewDataset.ods: This file contains a table with information regarding the

generated Neural Networks models and the results obtained.

 new_dataset_dl_logs.txt: This file contains more information about each generated

model.

 Models: This folder contains the generated Neural Networks models that can be

used in conjunction with the files to predict new artifacts.

 Predictions: Contains prediction results of new artifacts from some previously

generated Neural Networks models.

 dl_predictor.py: Python script that can be used to classify new artifacts.

101

6. DISCUSSION

6.1. Contributions of This Work

From Tables 4 and 13, comparing the characteristics of other research with the present

work, it can be inferred that our experiment has several advantages:

 Unlike all the other studies analyzed in the Related Work section, which only use around

three types of features, our research uses the full range of related attributes to study

artifacts. This full use of different characteristics allows for the recognition of behavior

patterns common to ransomware. Therefore, even new variants not initially present in

the training set can be detected.

The attributes used by this research are:

• PROCMEMORY: memory management information;

• EXTRACTED: information on executed scripts;

• NETWORK: network data;

• SIGNATURES: predefined patterns that might represent malicious behavior;

• STATIC: static analysis data, including entropy level obtained by the cuckoo

sandbox software;

• BEHAVIOR: libraries to which the artifact makes calls, suspicious processes, and

affected registry keys;

• DEBUG: actions, errors, and log information recorded during the dynamic analysis.

 Table 4 shows that most researchers use only a fraction of all possible types of features

available in dynamic analysis, for example, attributes related to the network or API calls

that are part of the behavior parameters. For better classification results, it is necessary

to use a more complete description of the ransomware activities delineated by the

presence of all the related types of dynamic features. For this reason, we chose 50

attributes related to the before-mentioned group of dynamic parameters related to

ransomware effects.

 The 10-fold cross-validation accuracy, precision, recall, and F1 values obtained with the

final dataset, using random forest and gradient boosted regression trees, are practically

perfect, ensuring the threat’s detection with a processing time in the range of seconds.

102

Other studies have detection results comparable to or lower than the ones obtained in

our research.

 The dataset that our study delivers are a feature dataset; that is, it is information that is

already ready to be used as input to a machine learning classifier to obtain models that

can be tested on new data to be categorized. Most studies only mention the ransomware

sample sources, e.g., VirusTotal, and the number of ransomware and goodware used

in their datasets; they do not deliver their samples dataset nor the features dataset

generated with their work. Unlike other studies, we present in the paper the information

we produced in a GitHub repository for community use (https://github.com/Juan-

Herrera-Silva/PaperSENSORS, accessed on 2 December 2022).

 The fact that we apply machine learning gives flexibility to our research because this

technique allows for the discovery of hidden patterns in the ransomware behavior.

Because this study uses the full range of relevant dynamic features without redundant

information (with low correlation pairwise), it generates models that recognize patterns

corresponding to the locker and crypto-ransomware variants not present in the training

set.

 The time it takes for our classifiers to process the samples is in the order of seconds,

making it possible to detect the threat and stop it before any damage is achieved.

 The range of platforms used for our study is more complete than the ones used in other

studies. The sandbox implementation is executed in Windows XP, Windows 7 Ultimate,

Windows 7 Professional, Windows 10 Enterprise, and Windows 10 Professional.

103

7. CONCLUSIONS

The fact that ransomware attacks continue to produce millions in losses worldwide shows

that there is much room for improvement in ransomware detection. The present work

contributes to some of the still open issues. One of these issues is the necessity of a dataset

containing features corresponding to all the ransomware attack patterns that could be used

to train supervised algorithms and neural network models. This feature dataset should

include all the relevant attributes related to the threat’s behavior and should be open for the

development of new machine learning ransomware detection solutions. Our work aims in

that direction.

In the present research, the authors have developed a dataset composed of the dynamic

features of locker and encryptor ransomware and characteristics extracted from goodware.

The features were selected with the criteria that they are related to the effects of

ransomware. In the literature, it was found that a ransomware dataset with these

characteristics was needed because the ones that are publicly accessible do not have

dynamic features of the artifacts but only fixed signatures, or their results are challenging to

replicate or use for lack of enough descriptive information.

Dynamic analysis is essential for ransomware detection because the run-time attributes

have enough information for machine learning early detection of these threats. In our study,

since most of these features are shared by diverse ransomware samples, our dynamic

analysis can be used even for detecting new variants. For dynamic analysis, the

experimentation must be conducted in an isolated environment to protect the network from

using a sandbox for artifact execution. For this purpose, cuckoo sandbox was used to create

JSON files with nested information of the dynamic features. The features were selected

using criteria related to the role of each attribute in the ransomware attacks and the results

of experimentation with machine learning algorithms aiming to obtain the best

performances. The JSON file’s total number of features was 326, and the chosen

characteristics were 50.

In Phase Previous, we extracted seven features and tested them on five ransomware

artifacts over two platforms to obtain a dataset of 6783 rows. In Phase initial, we added

more ransomware families and goodware artifacts for dataset balancing, with a total of 24

families to get a 47959 register dataset.

104

In Phase Analysis, we started feature engineering testing combinations of features to obtain

the performance of the machine learning algorithms with each one. We found that the best

performance was consistently yielded using Random Forest, Gradient Boosted Trees, and

Neural Networks algorithms. In this stage, using combinations of 14 features, we tested 24

families of artifacts over the same two platforms and generated a 62989 record dataset.

On the other hand, when other authors use dynamic features, they only use some attributes,

for example, attributes related to the network, API and DLL calls, or file systems. For better

classification results that even detect variants not included in the training set, it is necessary

to use a more complete description of the ransomware activities delineated by the presence

of all the relevant dynamic features.

In Phase Final, we developed two features datasets, Dataset Global and Dataset Extract.

This research has gone through two steps to categorize three classes: locker ransomware,

encryptor ransomware, and goodware.

The first step, using our dynamic feature extraction tool, the features were tested, and 50

characteristics were selected because they comply with criteria related to ransomware

attacks. They were also tested to have a low pairwise correlation to avoid redundant

information. In the trials, the study found that high performances for the machine learning

algorithms were obtained for these 50 characteristics and the machine learning algorithms

mentioned in Section 5. The researchers used 20 ransomware artifacts and 20 goodware

families tested with ten experiments, each over five platforms, to produce a dataset named

Dataset Global with 1’424.344 rows. For this dataset, there were several rows

corresponding to one JSON. The best performance results were obtained with gradient

boosted regression trees with values of 0.98 for 10-fold cross-evaluation accuracy.

However, processing times for machine learning model generation were high because it

took in the range of 4 h to obtain the models.

The second step, to generate a more portable, efficient, and concise dataset without losing

relevant information, the research developed a process for synthesizing all the rows

corresponding to one JSON into one row. This way, using the information provided for the

previous repository, the study obtained a second dataset named Dataset Extract with 2000

records, corresponding to forty families and ten experiments for each artifact over five

platforms. Using this dataset, performance results for our models improved even more for

gradient boosted regression trees, random forest, and neural networks because they

105

reached values close to perfect detection for ransomware. The reported accuracy presented

in the literature for ransomware detection gives 0.997 as a maximum value; thus, our

models have comparable or better performance. Additionally, processing times were

reduced from hours (using the Dataset Global) to seconds using the summary dataset

(Dataset Extract).

In the deployment, predicting new artifacts requires applying the generated models, whether

in the repository or not. The programs allow changing the directories of csv json files and

models to execute them in the production stage.

This dataset is available for public access along with the present article and in the GitHub

repository16. The dataset we deliver will allow the researchers to summarize which malware

parameters affect a system more. Therefore, this information can be used as a starting point

for generating new methods of detecting ransomware. As the dataset will be of public

access, the scientific community can improve, modify, and share this knowledge.

The present research’s objectives and hypothesis were achieved and confirmed.

16 https://github.com/Juan-Herrera-Silva/Paper-SENSORS

106

8. FUTURE WORK

Ransomware detection will remain one of the highest priority challenges for individuals and

organizations for the years to come. Therefore, it is still necessary to find solutions that are

really effective and can stop these attacks that are constantly evolving with new variants.

Our approach using machine-learning models and ransomware feature datasets allows this

detection to occur. However, it still requires work for general application outside the lab. As

future work, we consider it is necessary to develop an application that can be executed in

real-time to generate a program that obtains the JSON files using the cuckoo structure of

new samples to form a feature vector. These feature vectors would be entered into the

machine learning models to quickly detect the virus before it starts to encrypt the files. This

requires a response time of fewer than 45 minutes because, according to Microsoft17, close

to 97% of all ransomware infections take less than 4 hours to successfully infiltrate their

target. The fastest can take over systems in less than 45 minutes.

Additionally, the feature dataset should be constantly updated with new ransomware

available data to produce machine-learning models capable of responding effectively to this

threat. As the final feature dataset is public access, the author hopes the scientific

community can use, improve, modify, and share this knowledge.

17 https://blogs.microsoft.com/on-the-issues/2020/09/29/m icrosoft-digital-defense-report-cyber-threats/

107

REFERENCES

[1] W. X. Tee, W. Jung, and A. A. Radlet, “ASEAN Cyberthreat Assessment Report

2020,” Interpol, p. 30, 2020, [Online]. Available:

https://www.interpol.int/en/content/download/14922/file/ASEAN_CyberThreatAsses

sment_2020.pdf.

[2] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A Survey on Ransomware: Evolution,

Taxonomy, and Defense Solutions,” ACM Comput. Surv., vol. 1, no. 1, 2022, doi:

10.1145/3514229.

[3] N. A. Hassan, “Ransomware Revealed: A Beginner’s Guide to Protecting and

Recovering from Ransomware Attacks,” Access, IEEE, p. 2, 2019.

[4] R. Richardson and M. North, “Ransomware: Evolution, Mitigation and Prevention,”

Int. Manag. Rev., vol. 13, no. 1, pp. 10–21, 2017.

[5] D. Gonzalez and T. Hayajneh, “Detection and prevention of crypto-ransomware,”

2017 IEEE 8th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON

2017, vol. 2018-Janua, pp. 472–478, 2017, doi: 10.1109/UEMCON.2017.8249052.

[6] J. Dimaggio, “A history of Revil,” vol. 1, no. January 27, pp. 1–6, 2022.

[7] M. A. Sotelo Monge, J. M. Vidal, and L. J. García Villalba, “A novel self-organizing

network solution towards crypto-ransomware mitigation,” ACM Int. Conf. Proceeding

Ser., 2018, doi: 10.1145/3230833.3233249.

[8] Group IB Experts, “Ransomware Uncovered,” no. March, pp. 1–22, 2021.

[9] S. Gadhiya, K. Bhavsar, and P. D. Student, “Techniques for Malware Analysis,” Int.

J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 4, pp. 2277–128, 2013.

[10] M. Sikorski and A. Honig, Practical malware analysis: the hands-on guide to

dissecting malicious software. no starch press. 2012.

[11] A. Ray and A. Nath, “International Journal of Advance Research in Computer

Science and Management Studies Introduction to Malware and Malware Analysis: A

brief overview,” no. November, 2016, [Online]. Available: www.ijarcsms.com.

108

[12] Sophos, “The State of Ransomware.” pp. 1–21, 2021.

[13] J. A. H. Silva, L. I. B. López, Á. L. V. Caraguay, and M. Hernández-álvarez, “A survey

on situational awareness of ransomware attacks-detection and prevention

parameters,” Remote Sens., vol. 11, no. 10, 2019, doi: 10.3390/rs11101168.

[14] Monika, P. Zavarsky, and D. Lindskog, “Experimental Analysis of Ransomware on

Windows and Android Platforms: Evolution and Characterization,” Procedia Comput.

Sci., vol. 94, pp. 465–472, 2016, doi: 10.1016/j.procs.2016.08.072.

[15] D. Sgandurra, L. Muñoz-González, R. Mohsen, and E. C. Lupu, “Automated Dynamic

Analysis of Ransomware: Benefits, Limitations and use for Detection,” 2016, [Online].

Available: http://arxiv.org/abs/1609.03020.

[16] A. Kharraz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “A Large-Scale,

Automated Approach to Detecting Ransomware,” Metalurgija, vol. 54, no. 1, pp. 286–

288, 2016.

[17] A. B. KARDILE, “Crypto ransomware analysis and detection using process monitor,”

no. December, pp. 1–14, 2017.

[18] S. Jung and Y. Won, “Ransomware detection method based on context-aware

entropy analysis,” Soft Comput., vol. 22, no. 20, pp. 6731–6740, 2018, doi:

10.1007/s00500-018-3257-z.

[19] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, “Software-defined networking-based

crypto ransomware detection using HTTP traffic characteristics,” Comput. Electr.

Eng., vol. 66, pp. 353–368, 2018, doi: 10.1016/j.compeleceng.2017.10.012.

[20] E. Kolodenker, W. Koch, G. Stringhini, and M. Egele, “PayBreak : Defense against

cryptographic ransomware,” ASIA CCS 2017 - Proc. 2017 ACM Asia Conf. Comput.

Commun. Secur., pp. 599–611, 2017, doi: 10.1145/3052973.3053035.

[21] Y. Takeuchi, K. Sakai, and S. Fukumoto, “Detecting ransomware using support

vector machines,” ACM Int. Conf. Proceeding Ser., pp. 1–6, 2018, doi:

10.1145/3229710.3229726.

[22] A. M. Maigida, S. M. Abdulhamid, M. Olalere, J. K. Alhassan, H. Chiroma, and E. G.

109

Dada, “Systematic literature review and metadata analysis of ransomware attacks

and detection mechanisms,” J. Reliab. Intell. Environ., vol. 5, no. 2, pp. 67–89, 2019,

doi: 10.1007/s40860-019-00080-3.

[23] S. Mehnaz, A. Mudgerikar, and E. Bertino, RWGuard: A real-time detection system

against cryptographic ransomware, vol. 11050 LNCS, no. March 2019. Springer

International Publishing, 2018.

[24] Z. G. Chen, H. S. Kang, S. N. Yin, and S. R. Kim, “Automatic ransomware detection

and analysis based on dynamic API calls flow graph,” Proc. 2017 Res. Adapt.

Converg. Syst. RACS 2017, vol. 2017-Janua, pp. 196–201, 2017, doi:

10.1145/3129676.3129704.

[25] G. Cusack, O. Michel, and E. Keller, “Machine learning-based detection of

ransomware using SDN,” SDN-NFVSec 2018 - Proc. 2018 ACM Int. Work. Secur.

Softw. Defin. Networks Netw. Funct. Virtualization, Co-located with CODASPY 2018,

vol. 2018-Janua, pp. 1–6, 2018, doi: 10.1145/3180465.3180467.

[26] K. P. Subedi, D. R. Budhathoki, and D. Dasgupta, “Forensic analysis of ransomware

families using static and dynamic analysis,” Proc. - 2018 IEEE Symp. Secur. Priv.

Work. SPW 2018, pp. 180–185, 2018, doi: 10.1109/SPW.2018.00033.

[27] O. M. K. Alhawi, J. Baldwin, and A. Dehghantanha, “Leveraging Machine Learning

Techniques for Windows Ransomware Network Traffic Detection,” vol. 70, pp. 1–11,

2018, doi: 10.1017/CBO9781107415324.004.

[28] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K. Sangaiah,

“Classification of ransomware families with machine learning based on N-gram of

opcodes,” Futur. Gener. Comput. Syst., vol. 90, pp. 211–221, 2019, doi:

10.1016/j.future.2018.07.052.

[29] M. Hasan, M., Rahman, “RansHunt_ A support vector machines based ransomware

analysis framework with integrated feature set - IEEE Conference Publication.pdf,”

pp. 22–24, 2017.

[30] T. Lu, L. Zhang, S. Wang, and Q. Gong, “Ransomware detection based on V-detector

negative selection algorithm,” in 2017 International Conference on Security, Pattern

110

Analysis, and Cybernetics (SPAC), Dec. 2017, vol. 2018-Janua, pp. 531–536, doi:

10.1109/SPAC.2017.8304335.

[31] S. K. Shaukat and V. J. Ribeiro, “This paper is a preprint (IEEE ‘ accepted ’ status).

IEEE copyright notice : RansomWall : A Layered Defense System against

Cryptographic Ransomware Attacks using Machine Learning,” pp. 356–363, 2018.

[32] F. Khan, C. Ncube, L. K. Ramasamy, S. Kadry, and Y. Nam, “A Digital DNA

Sequencing Engine for Ransomware Detection Using Machine Learning,” IEEE

Access, vol. 8, pp. 119710–119719, 2020, doi: 10.1109/ACCESS.2020.3003785.

[33] I. Bello et al., “Detecting ransomware attacks using intelligent algorithms: recent

development and next direction from Neural Networks and big data perspectives,” J.

Ambient Intell. Humaniz. Comput., vol. 11, no. 10, p. 1168, Nov. 2020, doi:

10.1007/s12652-020-02630-7.

[34] R. Enbody, A. K. Sood, and P. Bajpai, “A key-management-based taxonomy for

ransomware,” eCrime Res. Summit, eCrime, vol. 2018-May, pp. 1–12, 2018, doi:

10.1109/ECRIME.2018.8376213.

[35] M. Conti, A. Gangwal, and S. Ruj, “On the economic significance of ransomware

campaigns: A Bitcoin transactions perspective,” Comput. Secur., vol. 79, pp. 162–

189, 2018, doi: 10.1016/j.cose.2018.08.008.

[36] J. Hernandez-Castro, E. Cartwright, and A. Stepanova, “Economic Analysis of

Ransomware,” SSRN Electron. J., pp. 1–14, 2017, doi: 10.2139/ssrn.2937641.

[37] K. Gangwar, S. Mohanty, and A. K. Mohapatra, Analysis and detection of

ransomware through its delivery methods, vol. 799. Springer Singapore, 2018.

[38] C. Moore, “Detecting ransomware with honeypot techniques,” Proc. - 2016

Cybersecurity Cyberforensics Conf. CCC 2016, pp. 77–81, 2016, doi:

10.1109/CCC.2016.14.

[39] A. Zahra and M. A. Shah, “IoT based ransomware growth rate evaluation and

detection using command and control blacklisting,” ICAC 2017 - 2017 23rd IEEE Int.

Conf. Autom. Comput. Addressing Glob. Challenges through Autom. Comput., no.

September, pp. 7–8, 2017, doi: 10.23919/IConAC.2017.8082013.

111

[40] S. Sheen and A. Yadav, "Ransomware detection by mining API call usage," 2018

International Conference on Advances in Computing, Communications and

Informatics (ICACCI), 2018, pp. 983-987, doi: 10.1109/ICACCI.2018.8554938.

[41] N. Hampton, Z. Baig, and S. Zeadally, “Ransomware behavioural analysis on

windows platforms,” J. Inf. Secur. Appl., vol. 40, pp. 44–51, 2018, doi:

10.1016/j.jisa.2018.02.008.

[42] JI, Zhou; D. DASGUPTA, "V-detector: An efficient negative selection algorithm with

probably adequate detector coverage". Information sciences, 2009, vol. 179, no 10,

p. 1390-1406. [43] L. P. Sendagorta, “Optimal Power Flow for Distribution

Networks,” no. July, pp. 2–4, 2017, [Online]. Available:

https://www.iit.comillas.edu/pfc/resumenes/595bd3755cc6c.pdf.

[43] V. B. Singh and K. K. Chaturvedi, "Entropy based bug prediction using support vector

regression," 2012 12th International Conference on Intelligent Systems Design and

Applications (ISDA), 2012, pp. 746-751, doi: 10.1109/ISDA.2012.6416630.

[44] B. A. S. Al-Rimy, M. A. Maarof, Y. A. Prasetyo, S. Z. M. Shaid, and A. F. M. Ariffin,

“Zero-day aware decision fusion-based model for crypto-ransomware early

detection,” Int. J. Integr. Eng., vol. 10, no. 6, pp. 82–88, 2018, doi:

10.30880/ijie.2018.10.06.011.

[45] M. Alam, S. Sinha, S. Bhattacharya, S. Dutta, D. Mukhopadhyay, and A.

Chattopadhyay, “RAPPER: Ransomware Prevention via Performance Counters.”

2020, [Online]. Available: http://arxiv.org/abs/2004.01712.

[46] J. A. Gómez-Hernández, L. Álvarez-González, and P. García-Teodoro, “R-Locker:

Thwarting ransomware action through a honeyfile-based approach,” Comput. Secur.,

vol. 73, pp. 389–398, 2018, doi: 10.1016/j.cose.2017.11.019.

[47] K. Cabaj, M. Gregorczyk, and W. Mazurczyk, “Software-defined networking-based

crypto ransomware detection using HTTP traffic characteristics,” Comput. Electr.

Eng., vol. 66, pp. 353–368, 2018, doi: 10.1016/j.compeleceng.2017.10.012.

[48] A. SOURI, R. HOSSEINI, "A state-of-the-art survey of malware detection approaches

using data mining techniques". Human-centric Computing and Information Sciences,

112

2018, vol. 8, no 1, p. 1-22.

[49] T. Inoue, K. Hasegawa, M. Yanagisawa and N. Togawa, "Designing hardware trojans

and their detection based on a SVM-based approach," 2017 IEEE 12th International

Conference on ASIC (ASICON), 2017, pp. 811-814, doi:

10.1109/ASICON.2017.8252600.

[50] Ö. Aslan and R. Samet, "Investigation of Possibilities to Detect Malware Using

Existing Tools," 2017 IEEE/ACS 14th International Conference on Computer

Systems and Applications (AICCSA), 2017, pp. 1277-1284, doi:

10.1109/AICCSA.2017.24.

[51] S. Maniath, A. Ashok, P. Poornachandran, and S. Jan, “Deep Learning LSTM based

Ransomware Detection.,” vol. 3.

[52] A. PEKTAS, T. ACARMAN, "Malware classification based on API calls and behaviour

analysis". IET Information Security, 2018, vol. 12, no 2, p. 107-117.

[53] G. KRISHNA, V. RADHA, K. RAO, V. Gopala, "Evolutionary Binary Classification using

Cuckoo Search for Malware Perception in API Call Sequences". En 2017 IEEE International

Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, 2017. p.

1-8.

[54] J. E. Thomas and G. C. Galligher, “Improving Backup System Evaluations in

Information Security Risk Assessments to Combat Ransomware,” Comput. Inf. Sci.,

vol. 11, no. 1, p. 14, 2018, doi: 10.5539/cis.v11n1p14.

[55] R. Vinayakumar, K. P. Soman, K. K. S. Velan, and S. Ganorkar, “Evaluating shallow

and deep networks for ransomware detection and classification,” 2017 Int. Conf. Adv.

Comput. Commun. Informatics, ICACCI 2017, vol. 2017-Janua, pp. 259–265, 2017,

doi: 10.1109/ICACCI.2017.8125850.

[56] I. Kwon and E. G. Im, “Extracting the representative API call patterns of malware

families using recurrent neural network,” Proc. 2017 Res. Adapt. Converg. Syst.

RACS 2017, vol. 2017-Janua, pp. 202–207, 2017, doi: 10.1145/3129676.3129712.

[57] P. O’Kane, S. Sezer, and D. Carlin, “Evolution of ransomware,” IET Networks, vol. 7,

no. 5, pp. 321–327, 2018, doi: 10.1049/iet-net.2017.0207.

113

[58] A. K. Maurya, N. Kumar, A. Agrawal, and R. A. Khan, “Ransomware Evolution, Target

and Safety Measures,” Int. J. Comput. Sci. Eng., vol. 6, no. 1, pp. 80–85, 2018, doi:

10.26438/ijcse/v6i1.8085.

[59] M. MONGE, J. VIDAL, L. VILLALBA, "A novel self-organizing network solution

towards crypto-ransomware mitigation". En Proceedings of the 13th International

Conference on Availability, Reliability and Security. 2018. p. 1-10.

[60] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “A 0-day aware crypto-ransomware

early behavioral detection framework,” Lect. Notes Data Eng. Commun. Technol.,

vol. 5, pp. 758–766, 2018, doi: 10.1007/978-3-319-59427-9_78.

[61] B. ZHANG, et al. "Ransomware classification using patch-based CNN and self-

attention network on embedded N-grams of opcodes". Future Generation Computer

Systems, 2020, vol. 110, p. 708-720.

[62] A. Cimitile, F. Mercaldo, V. Nardone, A. Santone, and C. A. Visaggio, “Talos: no more

ransomware victims with formal methods,” Int. J. Inf. Secur., vol. 17, no. 6, pp. 719–

738, 2018, doi: 10.1007/s10207-017-0398-5.

[63] D. Y. Huang et al., “Tracking Ransomware End-to-end,” Proc. - IEEE Symp. Secur.

Priv., vol. 2018-May, no. 1, pp. 618–631, 2018, doi: 10.1109/SP.2018.00047.

[64] A. Cohen and N. Nissim, “Trusted detection of ransomware in a private cloud using

machine learning methods leveraging meta-features from volatile memory,” Expert

Syst. Appl., vol. 102, pp. 158–178, 2018, doi: 10.1016/j.eswa.2018.02.039.

[65] S. Homayoun et al., “DRTHIS: Deep ransomware threat hunting and intelligence

system at the fog layer,” Futur. Gener. Comput. Syst., vol. 90, pp. 94–104, 2019, doi:

10.1016/j.future.2018.07.045.

[66] Z. H. Wang, C. G. Liu, J. Qiu, Z. H. Tian, X. Cui, and S. Su, “Automatically Traceback

RDP-Based Targeted Ransomware Attacks,” Wirel. Commun. Mob. Comput., vol.

2018, 2018, doi: 10.1155/2018/7943586.

[67] B. A. S. Al-rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware threat success

factors, taxonomy, and countermeasures: A survey and research directions,”

Comput. Secur., vol. 74, pp. 144–166, 2018, doi: 10.1016/j.cose.2018.01.001.

114

[68] A. El-Kosairy and M. A. Azer, “Intrusion and ransomware detection system,” 2018

1st Int. Conf. Comput. Appl. Inf. Secur., pp. 1–7, 2018, doi:

10.1109/cais.2018.8471688.

[69] D. Y. Kim, G. Y. Choi, and J. H. Lee, “White list-based ransomware real-time

detection and prevention for user device protection,” 2018 IEEE Int. Conf. Consum.

Electron. ICCE 2018, vol. 2018-Janua, pp. 1–5, 2018, doi:

10.1109/ICCE.2018.8326119.

[70] T. Honda, K. Mukaiyama, T. Shirai, T. Ohki, and M. Nishigaki, “Ransomware

detection considering user’s document editing,” Proc. - Int. Conf. Adv. Inf. Netw. Appl.

AINA, vol. 2018-May, pp. 907–914, 2018, doi: 10.1109/AINA.2018.00133.

[71] J. Saleem, B. Adebisi, R. Ande, and M. Hammoudeh, “A state of the art survey -

Impact of cyber attacks on SME’s,” ACM Int. Conf. Proceeding Ser., vol. Part F1305,

2017, doi: 10.1145/3102304.3109812.

[72] A. Kamal et al., “A User-friendly Model for Ransomware Analysis Using Sandboxing,”

Comput. Mater. Contin., vol. 67, no. 3, pp. 3833–3846, 2021, doi:

10.32604/cmc.2021.015941.

[73] L. Alhathally and E. Alsuwat, “RANSOMWARE ATTACK DETECTION AND

PREVENTION,” 2020.

[74] U. Urooj, B. A. S. Al-rimy, A. Zainal, F. A. Ghaleb, and M. A. Rassam, “Ransomware

Detection Using the Dynamic Analysis and Machine Learning: A Survey and

Research Directions,” Appl. Sci., vol. 12, no. 1, p. 172, Dec. 2021, doi:

10.3390/app12010172.

[75] A. H. Azizan et al., “A machine learning approach for improving the performance of

network intrusion detection systems,” Ann. Emerg. Technol. Comput., vol. 5, no.

Special issue 5, pp. 201–208, 2021, doi: 10.33166/AETiC.2021.05.025.

[76] H. Nitsch, J. Hernandez-castro, and D. Hurley-smith, “RAMSES2020 – Internet

Forensic platform for tracking the money flow of financially-motivated malware,” pp.

141–146, [Online]. Available: http://ramses2020.eu/.

[77] A. Couce and D. Ríos, “Delft University of Technology CYBECO Supporting cyber-

115

insurance from a behavioural choice perspective,” 2019.

[78] cuckoosandbox, “Automated Malware Analysis,” december 12, 2018. .

[79] K. Cabaj and W. Mazurczyk, “Using software-defined networking for ransomware

mitigation: The case of cryptowall,” IEEE Netw., vol. 30, no. 6, pp. 14–20, 2016, doi:

10.1109/MNET.2016.1600110NM.

[80] S. Pletinckx, C. Trap, and C. Doerr, “Malware coordination using the blockchain: An

analysis of the cerber ransomware,” 2018 IEEE Conf. Commun. Netw. Secur. CNS

2018, pp. 1–9, 2018, doi: 10.1109/CNS.2018.8433199.

[81] M. Almgren, V. Gulisano, and F. Maggi, “Cutting the Gordian Knot: A Look Under the

Hood of Ransomware Attacks,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9148, pp. 3–24, 2015, doi:

10.1007/978-3-319-20550-2.

[82] H. Zuhair, A. Selamat, and O. Krejcar, “A multi-tier streaming analytics model of 0-

day ransomware detection using machine learning,” Appl. Sci., vol. 10, no. 9, 2020,

doi: 10.3390/app10093210.

[83] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, “A Survey on Ransomware: Evolution,

Taxonomy, and Defense Solutions,” ACM Comput. Surv., 2022, doi:

10.1145/3514229.

[84] A. Patel and J. Tailor, “A malicious activity monitoring mechanism to detect and

prevent ransomware,” Comput. Fraud Secur., vol. 2020, no. 1, pp. 14–19, 2020, doi:

10.1016/S1361-3723(20)30009-9.

[85] A. Alzahrani, A. Alshehri, H. Alshahrani, and H. Fu, “Ransomware in Windows and

Android Platforms.” 2020, [Online]. Available: http://arxiv.org/abs/2005.05571.

[86] M. I. Eduardo Berrueta, Daniel Morató , Eduardo Magaña, “Open Repository for the

Evaluation of Ransomware Detection Tools,” February 24, 2020. https://ieee-

dataport.org/open-access/open-repository-evaluation-ransomware-detection-tools.

[87] Y. A. Ahmed, B. Koçer, S. Huda, B. A. Saleh Al-rimy, and M. M. Hassan, “A system

call refinement-based enhanced Minimum Redundancy Maximum Relevance

116

method for ransomware early detection,” J. Netw. Comput. Appl., vol. 167, p. 102753,

2020, doi: 10.1016/j.jnca.2020.102753.

[88] S. Il Bae, G. Bin Lee, and E. G. Im, “Ransomware detection using machine learning

algorithms,” Concurr. Comput. Pract. Exp., vol. 32, no. 18, pp. 1–11, 2020, doi:

10.1002/cpe.5422.

[89] K. C. Roy and Q. Chen, “DeepRan: Attention-based BiLSTM and CRF for

Ransomware Early Detection and Classification,” Inf. Syst. Front., vol. 23, no. 2, pp.

299–315, 2021, doi: 10.1007/s10796-020-10017-4.

[90] H. Zhou, G. Yang, Y. Xu, and W. Wang, Science of Cyber Security, vol. 11933. 2019.

[91] S. H. Kok, A. Azween, and N. Z. Jhanjhi, “Evaluation metric for crypto-ransomware

detection using machine learning,” J. Inf. Secur. Appl., vol. 55, p. 102646, 2020, doi:

10.1016/j.jisa.2020.102646.

[92] “Rahman, F. RanStop A Hardware‐assisted Runtime Crypto‐Ransomware Detection

Technique.pdf.” .

[93] S. Poudyal and D. Dasgupta, “AI-Powered Ransomware Detection Framework,”

2020 IEEE Symp. Ser. Comput. Intell. SSCI 2020, pp. 1154–1161, 2020, doi:

10.1109/SSCI47803.2020.9308387.

[94] Y. A. Ahmed, B. Koçer, and B. A. S. Al-Rimy, “Automated Analysis Approach for the

Detection of High Survivable Ransomware,” KSII Trans. Internet Inf. Syst., vol. 14,

no. 5, pp. 2236–2257, 2020, doi: 10.3837/tiis.2020.05.021.

[95] C. Galen and R. Steele, "Performance Maintenance Over Time of Random Forest-

based Malware Detection Models," 2020 11th IEEE Annual Ubiquitous Computing,

Electronics & Mobile Communication Conference (UEMCON), 2020, pp. 0536-0541,

doi: 10.1109/UEMCON51285.2020.9298068.

[96] S. Sharmeen, Y. A. Ahmed, S. Huda, B. S. Kocer, and M. M. Hassan, “Avoiding

Future Digital Extortion through Robust Protection against Ransomware Threats

Using Deep Learning Based Adaptive Approaches,” IEEE Access, vol. 8, pp. 24522–

24534, 2020, doi: 10.1109/ACCESS.2020.2970466.

117

[97] G. O. Ganfure, C. F. Wu, Y. H. Chang, and W. K. Shih, “DeepGuard: Deep

Generative User-behavior Analytics for Ransomware Detection,” Proc. - 2020 IEEE

Int. Conf. Intell. Secur. Informatics, ISI 2020, 2020, doi:

10.1109/ISI49825.2020.9280508.

[98] F. Ullah et al., “Modified Decision Tree Technique for Ransomware Detection at

Runtime through API Calls,” Sci. Program., vol. 2020, 2020, doi:

10.1155/2020/8845833.

[99] B. Qin, Y. Wang, and C. Ma, “API Call Based Ransomware Dynamic Detection

Approach Using TextCNN,” Proc. - 2020 Int. Conf. Big Data, Artif. Intell. Internet

Things Eng. ICBAIE 2020, pp. 162–166, 2020, doi:

10.1109/ICBAIE49996.2020.00041.

[100] S. Aurangzeb, R. N. Bin Rais, M. Aleem, M. A. Islam, and M. A. Iqbal, “On the

classification of Microsoft-Windows ransomware using hardware profile,” PeerJ

Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/peerj-cs.361.

[101] S. Verma, A. Chug, and A. P. Singh, Android Ransomware Detection Based on

Dynamic Obtained Features, vol. 978 AISC, no. Scdm. 2020.

[102] M. E. Ahmed, H. Kim, S. Camtepe, and S. Nepal, “Peeler: Profiling Kernel-Level

Events to Detect Ransomware,” Lect. Notes Comput. Sci. (including Subser. Lect.

Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 12972 LNCS, pp. 240–260, 2021,

doi: 10.1007/978-3-030-88418-5_12.

[103] M. A. Ayub, A. Continella, and A. Siraj, “An I/O Request Packet (IRP) Driven Effective

Ransomware Detection Scheme using Artificial Neural Network,” Proc. - 2020 IEEE

21st Int. Conf. Inf. Reuse Integr. Data Sci. IRI 2020, pp. 319–324, 2020, doi:

10.1109/IRI49571.2020.00053.

[104] B. Jethva, I. Traoré, A. Ghaleb, K. Ganame, and S. Ahmed, “Multilayer ransomware

detection using grouped registry key operations, file entropy and file signature

monitoring,” J. Comput. Secur., vol. 28, no. 3, pp. 337–373, 2020, doi: 10.3233/JCS-

191346.

[105] M. Hirano, R. Hodota, and R. Kobayashi, “RanSAP: An open dataset of ransomware

118

storage access patterns for training machine learning models,” Forensic Sci. Int.

Digit. Investig., vol. 40, p. 301314, 2022, doi: 10.1016/j.fsidi.2021.301314.

[106] T. Gutierrez, “Malware Sandbox Deployment , Analysis and Development.”

[107] A. Mohanta and A. Saldanha, Malware Analysis Lab Setup. 2020.

[108] J. A. H. Silva, F. D. B. Veloz, L. I. B. López, Á. Leonardo, V. Caraguay, and M.

Hernández-Álvarez, “Dataset de Ransomware basado en análisis dinámico,” Rev.

Ibérica Sist. e Tecnol. Informação, no. E23, pp. 248–261, 2019.

[109] C. Sandbox, “Cuckoo Sandbox Book,” 2011.

[110] S. Satish and Z. Ramzan, “Using sequencing and timng information of behavior

events in machine learning to detected malware.” p. 1, 2013.

[111] Y. L. Wan, J. C. Chang, R. J. Chen, and S. J. Wang, “Feature-Selection-Based

Ransomware Detection with Machine Learning of Data Analysis,” 2018 3rd Int. Conf.

Comput. Commun. Syst. ICCCS 2018, pp. 392–396, 2018, doi:

10.1109/CCOMS.2018.8463300.

[112] A. Tseng et al., “Deep Learning for Ransomware Detection,” IEICE Tech. Report;

IEICE Tech. Rep., vol. 116, no. 282, pp. 87–92, 2016, [Online]. Available:

https://yunchunchen.github.io/papers/IEICE-16/ieice-papers.pdf.

[113] RapidMiner, “RapidMiner Documentation,” 2022.

https://docs.rapidminer.com/latest/studio/operators/

modeling/predictive/support_vector_machines/fast_large_margin.html.

[114] Mahbubul Alam, “Linear Regression or Generalized Linear Model?,” May 31, 2020.

https://towardsdatascience.com/linear-regression-or-generalized-linear-model-

1636e29803d0.

[115] C. G. Akcora, Y. Li, Y. R. Gel, and M. Kantarcioglu, “BitcoinHeist: Topological Data

Analysis for Ransomware Prediction on the Bitcoin Blockchain,” pp. 4439–4445,

2020, doi: 10.24963/ijcai.2020/612.

[116] K. Lee, S. Y. Lee, and K. Yim, “Machine Learning Based File Entropy Analysis for

Ransomware Detection in Backup Systems,” IEEE Access, vol. 7, pp. 110205–

119

110215, 2019, doi: 10.1109/ACCESS.2019.2931136.

[117] S. H. Kok, A. Abdullah, N. Z. Jhanjhi, and M. Supramaniam, “Prevention of crypto-

ransomware using a pre-encryption detection algorithm,” Computers, vol. 8, no. 4,

pp. 1–15, 2019, doi: 10.3390/computers8040079.

[118] S. Poudyal, K. P. Subedi, and D. Dasgupta, “A Framework for Analyzing

Ransomware using Machine Learning,” Proc. 2018 IEEE Symp. Ser. Comput. Intell.

SSCI 2018, pp. 1692–1699, 2019, doi: 10.1109/SSCI.2018.8628743.

[119] ABORISADE, Opeyemi; ANWAR, Mohd. Classification for authorship of tweets by

comparing logistic regression and naive bayes classifiers. En 2018 IEEE

International Conference on Information Reuse and Integration (IRI). IEEE, 2018. p.

269-276.

[120] B. Tang, S. Kay, and H. He, “Toward Optimal Feature Selection in Naive Bayes for

Text Categorization,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 9, pp. 2508–2521,

2016, doi: 10.1109/TKDE.2016.2563436.

[121] ROSELINE, S. Abijah, et al. Intelligent vision-based malware detection and

classification using deep random forest paradigm. IEEE Access, 2020, vol. 8, p.

206303-206324.

[122] A. Azmoodeh, A. Dehghantanha, M. Conti, and K. K. R. Choo, “Detecting crypto-

ransomware in IoT networks based on energy consumption footprint,” J. Ambient

Intell. Humaniz. Comput., vol. 9, no. 4, pp. 1141–1152, 2018, doi: 10.1007/s12652-

017-0558-5.

[123] MORALES-MOLINA, Carlos Domenick, et al. Methodology for malware classification

using a random forest classifier. En 2018 IEEE International Autumn Meeting on

Power, Electronics and Computing (ROPEC). IEEE, 2018. p. 1-6.

[124] B. ALAHMADI, I. MARTINOVIC, "MalClassifier: Malware family classification using

network flow sequence behaviour", En 2018 APWG Symposium on Electronic Crime

Research (eCrime). IEEE, 2018. p. 1-13.

120

[125] A. Alqahtani and F. T. Sheldon, “A Survey of Crypto Ransomware Attack Detection

Methodologies: An Evolving Outlook,” Sensors, vol. 22, no. 5, p. 1837, Feb. 2022,

doi: 10.3390/s22051837.

[126] A. Gaurav,B. Gupta, P. Kumar, “A comprehensive survey on machine learning

approaches for malware detection in IoT-based enterprise information system”

https://doi.org/10.1080/17517575.2021.2023764

[127] Prachi, Kumar, “An effective ransomware detection approach in a cloud environment

using volatile memory features”. J Comput Virol Hack Tech 18, 407–424 (2022).

https://doi.org/10.1007/s11416-022-00425-2

[128] A. Vehabovic, N. Ghani, E. Bou-Harb, J. Crichigno and A. Yayimli, "Ransomware

Detection and Classification Strategies," 2022 IEEE International Black Sea

Conference on Communications and Networking (BlackSeaCom), 2022, pp. 316-

324, doi: 10.1109/BlackSeaCom54372.2022.9858296.

[129] M. Masum, M. J. Hossain Faruk, H. Shahriar, K. Qian, D. Lo and M. I. Adnan,

"Ransomware Classification and Detection With Machine Learning Algorithms,"

2022 IEEE 12th Annual Computing and Communication Workshop and Conference

(CCWC), 2022, pp. 0316-0322, doi: 10.1109/CCWC54503.2022.9720869.

[130] C. Gao, H. Shahriar, D. Lo, Y. Shi and K. Qian, "Improving the Prediction Accuracy

with Feature Selection for Ransomware Detection," 2022 IEEE 46th Annual

Computers, Software, and Applications Conference (COMPSAC), 2022, pp. 424-

425, doi: 10.1109/COMPSAC54236.2022.00072.

[131] T. M. Cover and J. A. Thomas. “Elements of Information Theory”. John Wiley &

Sons, 2nd edition, 2006.).

https://doi.org/10.1080/17517575.2021.2023764
https://doi.org/10.1007/s11416-022-00425-2

121

ANNEXES

ANNEX A: Tool for feature extraction

ANNEX B: Examples of the use of feature extraction tool

ANNEX C: Objects and features in json files

ANNEX D: Average occurrences of features for ransomware

ANNEX E: Model performances for Neural Networks models for 12 Datasets in Phase Final

ANNEX F: Model performances for Supervised Learning for 12 Datasets in Phase Final

ANNEX G: Model performances for Supervised Learning for Dataset Global in Phase Final

ANNEX H: Model performances for Neural Networks for Dataset Global in Phase Final

ANNEX I: Generation for Dataset Global in Phase Final

ANNEX J: Model performances for Neural Networks for Dataset Extract in Phase Final

ANNEX K: Model performances for Supervised Learning for Dataset Extract in Phase Final

ANNEX L: Artifacts’ use of CPU and memory

ANNEX M: Dataset Phase Initial

ANNEX N: Dataset Phase Analysis

ANNEX O: Dataset Global Phase Final

ANNEX P: Dataset Extract Phase Final

Note: Annexes at:

https://drive.google.com/drive/folders/1dLrRr4U8J3gFPkP5u0Is7QmgjgAuaD-X

The Dataset Extract Phase Final is available for public access along with the present article

and in the GitHub repository: https://github.com/Juan-Herrera-Silva/Paper-SENSORS

https://drive.google.com/drive/folders/1dLrRr4U8J3gFPkP5u0Is7QmgjgAuaD-X

