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ABSTRACT 

 

Ransomware-related cyber-attacks have been on the rise over the last decade, disturbing 

organizations considerably. Developing new and better ways to detect this type of malware 

is necessary. This research applies dynamic analysis and machine learning to identify the 

ever-evolving ransomware signatures using selected dynamic features. Since most of the 

attributes are shared by diverse ransomware-affected samples, our study can be used for 

detecting current and even new variants of the threat.  

This research has the following objectives: (1) Execute experiments with encryptor and 

locker ransomware combined with goodware to generate JSON files with dynamic 

parameters using a sandbox. (2) Analyze and select the most relevant and non-redundant 

dynamic features for identifying encryptor and locker ransomware from goodware. (3) 

Generate and make public a dynamic features dataset that includes these selected 

parameters for samples of different artifacts. (4) Apply the dynamic feature dataset to obtain 

models with machine learning algorithms. Five platforms, 20 ransomware, and 20 

goodware artifacts were evaluated. The final feature dataset is composed of 2000 registers 

of 50 characteristics each. This dataset allows for a machine learning detection with a 10-

fold cross-evaluation with an average accuracy superior to 0.99 for gradient boosted 

regression trees, random forest, and neural networks. 

As a complementary tool, the present study developed an application for extracting 

information from the dynamic analysis of artifacts generated in a sandbox. Additionally, a 

client-server architecture was established for deployment and application in the protection 

stage. The models´ performance were evaluated with the new test data to simulate this 

early protection phase for deployment. The obtained results were very satisfactory.  

 

INDEX TERMS Classification, Dataset, dynamic, analysis, Encryptor, features, Locker, 

Machine Learning, Ransomware 
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PROLOGUE 

 

The present work contributes to the knowledge of some still open issues about ransomware 

detection using cognitive security. One of these issues is the necessity of a dataset 

containing dynamic features corresponding to all the ransomware attack patterns that could 

be used to train supervised algorithms and neural network models. This dynamic feature 

dataset should include all the relevant attributes related to the threat’s behavior and be open 

to supporting the development of new machine learning ransomware detection solutions. 

Our work aims in this direction. 

The author has generated a dataset comprising the dynamic features of locker and 

encryptor ransomware and characteristics extracted from goodware. The features were 

selected with the criteria that they must be related to the effects of ransomware. The 

literature found that a ransomware dataset with these characteristics was needed because 

the ones that are publicly accessible do not have dynamic features of the artifacts; it is 

characteristics that are extracted when the software is executed. Still, only fixed signatures 

or their results are challenging to replicate or use for lack of enough descriptive information. 

Dynamic analysis is essential for ransomware detection because the run-time attributes 

have enough information for machine learning early detection of these threats. In our study, 

since most of these features are shared by diverse ransomware samples, our dynamic 

analysis can be used even for detecting new variants. The characteristics were selected 

using criteria related to the role of each attribute in the ransomware attacks and the results 

of experimentation with machine learning algorithms aiming to obtain the best 

performances. For better classification results that even detect variants not included in the 

training set, it is necessary to use a more complete description of the ransomware activities 

delineated by the presence of all the relevant dynamic features. 

To develop the final feature dataset, this research has used three classes of classifiers: 

locker ransomware, encrypting ransomware, and goodware. Using our dynamic feature 

extraction tool, the features were tested, and 50 characteristics were selected because they 

comply with criteria related to ransomware attacks. They were also checked for low pairwise 

correlation to avoid redundant information, and the machine learning algorithms' 

performance was high. The researchers used 20 ransomware artifacts and 20 goodware 
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families tested with ten experiments, each over five platforms, to produce a dataset with 

1’424.344 rows. For this dataset, there were several rows corresponding to one JSON. The 

best performance results were obtained with gradient boosted regression trees with values 

of 0.98 for 10-fold cross-evaluation accuracy.  

To generate a more portable, efficient, and concise dataset without losing relevant 

information, the research developed a process for synthesizing all the rows corresponding 

to one JSON into one row. Using the information provided for the previous repository, the 

study obtained a second dataset with 2000 records corresponding to forty families and ten 

experiments for each artifact over five platforms. Using this dataset, performance results for 

our models improved even more for gradient boosted regression trees, random forest, and 

neural networks because they reached values close to perfect detection for ransomware.  

In the deployment, predicting new artifacts requires applying the generated models, whether 

in the repository or not. The programs developed in this research allow for changing the 

directories of CSV JSON files and models to readily execute them in the production stage.  

Those, as mentioned above, are the scientific contributions of the present doctoral thesis.  
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1. INTRODUCTION 

The inner workings of the phenomenon known as ransomware is no longer a motley army 

of scammers. Its growing impact is now powered by dedicated teams working within an 

organized business framework. The US government manages a portfolio of risks that no 

corporation can imagine. Some risks are easy to guess, for example, a terrorist attack or a 

financial crisis; then, there is a whole new category based on cyber terrorism. In recent 

years in the United States, the two most remote and unexpected events were an airborne 

virus that claimed hundreds of thousands of lives and a random series of cyberattacks that 

left the country without access to vital services. The US government openly confessed that 

it had not kept up with the world. They have spent too long baffled that such attacks were 

no longer hypothetical. They had become something real. Cyber warfare has become a 

great leveler on the international stage. It represents an opportunity for non-state actors to 

give blood to any superpower; it is understandable that large corporations, like Apple, were 

left shaking with their intellectual property and customers now fully exposed, and it turns out 

that very few of them wanted to talk about it for fear that the acknowledgment of the risk 

would be an open invitation to be hacked. 

Because of the amount of sensitive information stored on both devices and the cloud while 

transferring over the network, malware detection, especially ransomware, has become a 

primary research topic in recent years. A ransomware-like attack uses a set of stages to 

infect a system; it starts with the device's distribution and infection. This malware searches 

for files to infect. It encrypts files, requests ransom, and threatens exposure to the affected 

company's sensitive information in case of non-payment. 

Ransomware malware continues to grow and transform; it took advantage of the anonymity 

provided by the growing popularity of cryptocurrencies. The researchers observed the 

emergence of numerous variants after 2013. After the switch to crypto-ransomware, 

ransomware continued to evolve, adding features like countdown timers, ransom amounts 

that increase over time, and infection routines that allow it to spread through networks and 

servers. 

 

 

1.1. Justification 
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Cybercrime activities have grown significantly in recent years by compromising device 

security and jeopardizing regular business affairs. The profits obtained through intimidation 

and limitations for tracking illegal transactions have created a lucrative business based on 

hijacking users' files. In this context, ransomware takes advantage of cryptography to 

compromise user information or deny access to the operating system. Then, the attacker 

extorts the victim to pay a ransom to regain access, recover data, or keep the information 

private. 

As of 2017, this threat had attacked hundreds of thousands of computers.  According to the 

US Department of Justice, more than 4,000 attacks have been reported per day1. The 

situation is aggravated by the development of IoT technology that allows the availability of 

new devices on the Internet with open access and the continuous emergence of new 

variants of this virus. 

The idea that a company's data is encrypted and copied is insidious. However, no 

organization should allow ignorance and grievance to drive policy. So it is time to rectify 

misconceptions about one of today's most fascinating and alarming corporate threats; that 

critical gap at the heart of the cyberattack came back to work when the company paid 

hackers millions in Ransom on May 7, 2019.  A large part of the colonial oil pipeline from 

Texas to New York City was closed in 2021. The wall between essential and non-essential 

had been breached. The FBI had not seen the attack coming and, as the operator put it, 

after paying Ransom's price of $4.4 million. 

Ransomware operators have business models and are no longer content to only target 

people who earn just a few dollars. At the same time, they have become an entity that, even 

with only moderate cyber warfare capabilities, could attack a country like the United States 

with a little more organization. By extension, the malware could also stop air traffic in Paris 

and eventually bring Philadelphia trains to a standstill. They picked a Texas pipeline that 

crippled South Carolina. The first real modern ransomware program dates back to 2005 

with the release of the pgp encoder. Victims would visit an infected website that would take 

advantage of inherent flaws within browsers. Then, ransomware progressed, switched from 

symmetric to asymmetric encryption, and further thwarted the security industry's efforts to 

                                                

1 https://www.hhs.gov/sites/default/files/RansomwareFactSheet.pdf 
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create practical decryption tools. The monetization strategy is also changing, with 

cryptocurrencies replacing other more traceable methods. 

Attackers exploited web and file servers and were deliberately positioned with public sector 

organizations in mind. Furthermore, no one rushed to calculate the financial risks because 

no one dared to make the assessment. It is as if you needed to set up an entirely new 

department to combat attacks or find a security guru who knew how to respond to various 

attacks. 

The city of Atlanta has also dealt with major cyber-attacks. Hackers froze computer systems 

and demanded payment, and in a Tweet, the city said the cause of the attack was after the 

Sam Sam outbreak in 2018, the city of Atlanta faced a $51,000 demand for unlocking all 

computers. After accounting for outage and remediation expenses, the final Ransom Bill 

exceeds $2.6 million. Thus, we come to the latest generation with ransomware operators 

adopting a franchise model2. 

Managing risk is an act of the imagination, and government officials and businesses are 

somewhat good at responding to a crisis and less good at taking action to prevent it in the 

first place. Every measure today has to do with progress, the progress of society, and the 

economy. The ransomware attack can be a big shock. 

Ransomware attacks have become a serious threat to information security globally, so the 

scientific community does constant research to detect and prevent such attacks. Despite 

these efforts, ransomware continues to be prevalent worldwide because antivirus and anti-

malware cannot recognize them because they use polymorphism and machine learning to 

avoid their recognition. On the other hand, exploit kits have appeared that efficiently 

produce new ransomware variants, which are sold on sale and with discounts so that 

anyone can develop this malware.  Our research develops a strategy with the same type of 

weapons with which this malware is presented; machine learning is used to detect the threat 

before it can hijack and encrypt the data. 

  

                                                

2 https://www.nytimes.com/2018/03/27/us/cyberattack-atlanta-ransomware.html 
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1.2. Objectives 

The literature study found that there are no readily available public databases with dynamic 

information on this type of attack, or the existing data are challenging to use because they 

are not described in enough detail. In this context, this work proposes to create a dataset 

with all the information necessary for its use; this dataset will be publicly available. We will 

also indicate the parameters that have been selected as features. In our dataset, an analysis 

of selected characteristics is presented. 

Our research aims to create a dataset that associates the ransomware samples used with 

the most distinctive dynamic virus features to detect them before the attack does its 

damage. This work presents this material to make it available to the scientific community 

and thus contribute to advancing the fight against this computer threat.  The dataset will be 

used to create models that allow early detection of the virus and achieve a proactive 

response that minimizes the damage this malware can cause. 

The parameters involved in creating the dataset are based on Cuckoo reports, considering 

326 features. This information creates a Ransomware Feature Dataset. Ransomware 

encrypts the files of its victims' computers for a short time to hijack the information and ask 

for a ransom. Standard methods of discovering the malware's signature do not work 

because the virus has a continuous evolution, making detecting this virus's action difficult. 

Therefore, new protection mechanisms must focus on ransomware's operations before 

encrypting files. 

The goal of our work, through our dataset, is to analyze the virus's behavior using machine 

learning algorithms, as shown in Figure 1. In the first step, we generate a feature vector that 

provides justified, meaningful, and relevant information about the threat. This feature vector 

will feed classifiers to obtain models for early risk detection. The dataset produced in this 

study defines the feature vector composed of relevant characteristics, tests the models, and 

specifies those that perform best. 
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Figure 1. Ransomware detection scheme 

The present research has the following objectives: 

1) Execute experiments with goodware, encryptor ransomware, and locker ransomware 

to generate JSON files with parameters that characterize the artifacts. For this 

purpose, we use simulations in an isolated environment with tools like Cuckoo 

Sandbox.  

2) Analyze and select the most relevant parameters for identifying encryptor and locker 

ransomware from goodware.  

3) Generate a dataset that includes these selected parameters for samples of different 

artifacts. 

4) Apply the dataset to the generation of models obtained with machine learning 

algorithms to detect encryptor and locker ransomware using different combinations of 

features to determine the selection of parameters that gives the best algorithm 

performance. These models will allow the ransomware to be detected before the 

information is encrypted and hijacked.  

5) Make this dataset publicly available to contribute to advancing the fight against this 

malware. 
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1.3. Hypotheses 

Our hypotheses are:  

 It is possible to build a dataset containing encryptor and locker ransomware and 

goodware dynamic features corresponding to several artifacts in specific platforms. 

 The features will deliver enough information to produce machine learning models to 

detect encryptor and locker ransomware, with performance over the state-of-the-art 

values, and their deployment will allow early detection of ransomware to minimize 

the damage it can cause. 

The present document consists of six sections. The first one is this introduction. Section 2 

gives context to the problem; this chapter includes a description of the ransomware 

evolution, the attack cycle, statistics, and the definition of concepts in this topic. Section 3 

is about related work, describing current research, most used features, and datasets. 

Section 4 describes the materials and methods used in our work. Section 5 presents the 

generated dataset, the modeling using the selected parameters as input to machine 

learning algorithms to classify goodware, encryptor, and locker ransomware and their 

respective results. In this chapter, it is also presented a deployment of the best models. 

Finally, section 6 exposes the study's conclusions. 
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2. BACKGROUND 

In this section, we cover a history of the evolution of ransomware from its origins until date, 

a definition of the taxonomy of this threat, the stages of the attacks, and the types of 

ransomware analysis.  

2.1. Ransomware History 

For context, we start explaining the process of one possible infection channel: Emotet3 

infection. The virus may arrive through a script, document files with macros, or a malicious 

link. The process is described in Figure 2, which starts with the infection, then affects the 

system logs (establishes persistence) and proceeds to establish a connection with the C&C 

servers to receive instructions (instruction phase), after which it spreads by Network-wide 

infection affecting victims with ransomware (network spread). (Fig. 2).   

 

Author: Juan A. Herrera Silva 

Figure 2. Ransomware by Emotet Infection 

Like any threat, ransomware is in continuous evolution. Like most malware, its goal is not 

to be detected or generate the most significant possible impact on infrastructure. Today, 

people are not only talking about cyber criminals demanding money but about threat actors 

                                                

3 https://devel.group/blog/todo-lo-que-necesitas-saber-sobre-emotet-en-2022/ 
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(ATP - Persistent Advanced Threat), who can encrypt information and enter a system to 

perform espionage, capture sensitive information, or gain access to inside information. 

Depending on the actor, an attack can use different techniques to enter the network. 

Methods include exploiting a vulnerability in a system exposed to the Internet using tools 

and tactics to infiltrate systems and networks such as: phishing, external remote services 

(VPN Virtual Private Networks, RDP Remote Desktop Protocol) or Zero-Day Exploitation, 

and infection of some trusted websites operated by members of an organization, among 

other techniques. 

Consequently, with that purpose, the attacker has a wide range of malware on the black 

market. One such service is currently provided by the Emotet malware, which was initially 

known as a banking Trojan. For its polymorphic versatility and ability to reach the end-user 

in a more friendly way, via e-mail, an Office-type document, or some JavaScript file. It can 

be downloaded from Internet repositories. In this way, attackers use Emotet as a dropper; 

a Trojan is used to install other types of malware on the operating system. Figure 2 explains 

the process of ransomware by Emotet infection. 

Big Game Hunting is on the rise. More groups are distributing ransomware and 

ransomware-as-a-Service (RaaS). They are focusing their attacks on extensive enterprise 

networks rather than individuals. Big Game Hunters frequently use different trojans to gain 

an initial foothold in the target network. In 2020 the scientists saw Ryuk operators employ 

Emotet and Trickbot4. This trend shows that phishing e-mails are still the most common 

technique used for initial access. 

Some groups that used simple Remote Desktop Protocol (RDP) brute force as an initial 

access technique did not even have ransomware in their arsenals and used a legitimate 

encryption tool instead. Simultaneously, even some of the most advanced Big Game 

Hunters employed this initial access vector in some cases.  Cerber, as an evolved 

ransomware technology, statistically surpassed the number of ransomware detected in the 

Asian region in 2019.  WannaCry ranks first globally in 2020 and continues to pose a threat 

after its rapid expansion in 2017 [1].   

                                                

4 https://www.bankinfosecurity.com/emotet-ryuk-trickbot-loader-ransomware-banker-trifecta-a-
14126 
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According to The State of Ransomware of Sophos 20205, attacks have skyrocketed since 

the big transition to remote work. Not only are attacks increasing, but they are also more 

sophisticated and dangerous. Ransomware attacked 51% of the organizations in the last 

year. The criminals managed to encrypt the data in 73% of these attacks, and 59% of 

attacks encrypted detailed data in the public cloud, which became the most successful 

ransomware attack in cybercrime. EvilQuest affected Mac operating systems (June 2020). 

This threat is more present than ever; it has not stopped even during pandemics. Therefore, 

it requires contributions that allow us to destroy this malware finally.    

There were 623.3 million ransomware attacks worldwide in 2021 and 304.6 million 

detected attacks in 2020. Between 2020 and Q2 2022, the volume of ransomware 

attacks peaked in Q2 2021 with 188.9 million attacks. The 5 most representative 

ransomware families in 2021 were: Stop with 51%, Revil with 34%, Cerber with 4%, Conti 

with 2%, Darkside with 1%. Others with 8%6. 

Figure 3 presents a timeline of the most representative changes in ransomware families 

and its evolution, from its appearance in 1989 to 2022.   The first ransomware appeared in 

1989 as AIDS since 1989, then new families have appeared such as Blockers, encryptors, 

ransomware as a service and extortionists who publish the kidnapped information of clients, 

exposing the reputation of those affected. Nowadays, they also act as denial of service over 

the network. Major ransomware has appeared affecting Windows operating systems such 

as Wanna Cry, but also affecting Linux systems such as Ransom X and EvilQuest for 

Macintosh systems. It should be mentioned that there are several ransomware that continue 

to affect systems today, despite the fact that they came out in previous years, such as: 

Cerber, Stop and Revil.

                                                

5 https://news.sophos.com/en-us/2020/05/12/the-state-of-ransomware-2020/ 
6 https://www.antivirusguide.com/cybersecurity/ransomware-statistics/?gclid=CjwKCAjwq-
WgBhBMEiwAzKSH6MbtY3_fLUDo8CVnDWTblLKf7g25wev2QEMizoxgS-
S1A18BmFeQIBoCZD4QAvD_BwE 
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Figure 3. Timeline of the evolution of ransomware 
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The Ransomware selected for the construction of the final Dataset and the experimentation 

with learning models is highlighted in yellow and those related to detection with deployment 

are highlighted in green in Fig.3.  Ransomware has evolved, and it is increasingly 

dangerous. Nowadays, there are more forms of extortion. The attackers not only hold data 

hostage and ask for ransom but also extort with the threat of publishing the sequestered 

data.  

For this, REvil and others also offer a service where customers, partners, and the press are 

called to spread confidential information if the ransom is not paid. Furthermore, the gangs 

may carry out a DDoS attack to shut down companies’ servers to keep the victim 

uncommunicated.  The ransomware variant Yanluowang adds a new threat: the repetition 

of the attack in a few weeks, deleting all the data.  

2.2.  Ransomware Taxonomy 

Ransomware can be classified according to the kind of victim it tries to affect, the method 

of infection, the mode of communication with the command-and-control server, and the type 

of malicious activity it performs on a computer asset [2]. For the development of our 

research, we focus on this last type of classification. There are two families of ransomware 

depending on the type of activity carried out on computer assets: 

Locker Ransomware 

This family blocks access to the computer system to close access to its users until they pay 

a sum of money [2], [3], [4]. The threat posed by this type of ransomware depends on the 

lock it implements. Some examples only block access to the graphical interface, which 

makes them less effective, while others act directly on the Master Boot Record of a system, 

which makes it much more dangerous [4]. 

Crypto Ransomware  

This type encrypts files found within a computer system, rendering them completely 

unusable and inaccessible until a sum of money is paid [2], [3], [4], [5]. This type of 

ransomware represents a higher threat than the Locker family since the infected files remain 

completely inaccessible even if the ransomware is removed from the computer system [3]. 

Examples of this type of malware use symmetric, asymmetric, and hybrid encryption 

techniques to encrypt files and protect the cryptographic keys [4]. Some variants steal the 
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information hosted on a system and threaten the affected parties with the publication or sale 

of the information in case the demanded money is not paid [6]. 

R4IoT  

It is a ransomware variation that demonstrates how Internet of Things (IoT) and Operational 

Technology (OT) exploits can be combined with a traditional ransomware campaign. It also 

indicates that mitigating these attacks requires solutions that enable complete visibility and 

greater control of all network assets7. 

This ransomware maps the different machines on the network and uses the password 

hashing of the administrator account and the Windows Management Instrumentation (WMI)  

functionality used to manage the devices and applications in a network from Windows. The 

virus disables Windows Firewall and Windows Defender and drops other R4IoT executables 

(a cryptocurrency miner and memory executable that will launch denial of service attacks 

against critical IoT/OT assets). A modified version provides Command-and-Control (C&C) 

server/agent functionality. It is a computer-controlled by the attacker that sends commands 

to the victim’s system to obtain stolen data. At the request of the C&C server, the C&C agent 

can encrypt or decrypt files on the infected machine, exfiltrate files and launch arbitrary 

executables with administrator privileges. 

This ransomware could attack Programmable Logic Controllers (PLCs), i.e., computers 

used to automate industrial electromechanical processes; this would have an immediate 

and difficult to mitigate effect. Since PLCs are rarely exposed to the outside world, it would 

be an internal DoS attack. Attacking PLCs could stop critical parts of business operations, 

be it a conveyor belt or an infusion pump.  R4IoT is not a new malware development; it uses 

existing exploits. More worryingly, the Proof of Concept could be used by less sophisticated 

cybercriminals using Ransomware-as-a-Service (RaaS).  

2.3. Stages of Ransomware Attacks 

When a ransomware attack is accomplished, the following processes are carried out: 

contagion, spread, action, and warning, as shown in Figure 4.  In encryption ransomware, 

the following phases are considered: distribution, infection, communication, file search, 

                                                

7 https://unaaldia.hispasec.com/2022/06/r4iot-el-futuro-del-ransomware-ya-esta-aqui.html 
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encryption, blocking, and ransom request. For blocking ransomware, only access to the 

computer is blocked [7]. 

 

Figure 4. A cycle of a ransomware attack 

In the latest methods used by the Ransomware groups [8], the researchers examined the 

most effective 2020 campaigns. The matrix, MITRE ATT&CK [8], is shown in Figure 5. It 

details their most common (highlighted in red) and also less used (highlighted in green) 

tactics, techniques, and procedures (TTP s). This threat uses remote access and attacks 

via phishing with attached files in the initial entry, then it executes commands (Power Shell), 

set persistence (affecting the registry), scales privileges (accesses), and applies defensive 

evasion techniques.  Besides, ransomware does network scans with lateral infection 

movements, taking control and command for transferring hijacked files to the cloud, and 

concludes with data encryption to end inhibiting the system. 
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Figure 5. MITRE ATT&CK Matrix for Ransomware. 
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2.4. Ransomware Analysis 

In general, malware analysis is studying, observing, and dissecting malicious software to 

determine its purpose, origin, and functionality [9], [10]. The analysis of this type of software 

is necessary to develop techniques that facilitate the detection of malware and tools that 

allow it to be counteracted [9]. The analysis could be classified as static or dynamic.  

Static Analysis 

This analysis focuses on studying a malicious software artifact without running it [9], [10]. 

Within a basic static analysis process, several activities are carried out, such as evaluating 

the software artifact in question within various antiviruses, searching within a binary file for 

readable text strings, and examining the artifact's metadata, among others. 

One of the advantages of using this type of analysis is that it allows an in-depth view of the 

content and behavior of an artifact. However, some disadvantages can make it difficult to 

carry out this type of analysis, such as code obfuscation by malware authors or if the artifact 

in question uses self-modifying code techniques [9]. Some of the methods used in this type 

of analysis are: 

Disassembly: It consists on using tools that allow reverse engineering to be carried out on 

the device in question [10]. With this technique, the intention is to obtain the instructions of 

the malware in assembly language from the machine code that contains the malicious 

software to analyze the instructions and determine the behavior of the artifact [9]. 

Information Extraction: Consists on extracting the information embedded in the malicious 

artifact without necessarily doing reverse engineering. This process includes removing 

readable text strings within the artifact or searching for information based on the file 

extension [9]. 

Use of antivirus: It simply passes the malicious artifact through several antiviruses from 

different providers [9], [11]. 

Dynamic Analysis 

The dynamic analysis focuses on executing the malicious artifact within a controlled 

environment. This execution allows to observe and monitor the behavior of the malware in 

the controlled environment and determine the changes it has made on it [9], [10], [11]. Since 
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a malicious artifact is going to be executed in this analysis, it is necessary to have a 

controlled and safe environment to be able to guarantee that, after executing it, 

counterproductive results are not obtained, such as the infection of neighboring networks 

or the infection of the computer that is running the malware. For this purpose, simulators, 

emulators, or sandboxing are used [11]. In this way, the dynamic analysis seeks to obtain 

some information on the execution of the artifact in question, such as: 

• System calls. 

• Modified system registries. 

• Files created, modified, or deleted. 

• Network connections established. 

• Network protocols used. 

• Modifications to the file system. 

Our research focuses on the dynamic analysis of ransomware using a sandbox to obtain 

information on ransomware behavior and goodware software artifacts to conduct dynamic 

analysis using a cuckoo tool. In addition, the authors describe a feature extraction program 

developed for this purpose. During execution, the artifacts yielded 326 dynamic features 

that describe what the artifact does while running inside an isolated operating system. Some 

of these features are related to ransomware activities and are pertinent for detecting this 

malware using machine learning techniques. The researchers analyzed ransomware 

behavior and chose 50 relevant and not redundant features to feed the learning algorithms 

to produce an accurate classification. 

2.5. Statistics of Ransomware Attacks 

In this section, we present some statistics demonstrating the severity of the problem created 

by the ransomware gangs. The attacks are rising and increased by 140% in Q3 of 20218. 

Figure 6 shows the common industries targeted by ransomware in the second quarter of 

2021. The public sector is the most affected, and nearly one in four local government 

organizations admitted to having no malware recovery plan in place in the 2021 Sophos 

survey [12]. This sector is most likely to see encrypted data and pay the extortions.  

                                                

8 https://www.pandasecurity.com/en/mediacenter/security/ransomware-statistics/ 
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Figure 6. Industries attacked by Ransomware during Q2 2021 

Figure 7 shows that in the second quarter of 2021, Remote Desktop Protocol (RDP) and 

Email phishing are the most common attack vectors [12]. 

 

Figure 7. Most common Ransomware Attack Vectors 

Since this problem is growing and has lethal effects on its victims, it is vital to develop a 

timely detection of this threat before it produces irreparable losses. From the review of 

related work detailed in chapter 3 of this thesis, we could detect that very few studies focus 

on dynamic analysis. Our research aims to cover this gap in diverse platforms.   
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3. RELATED WORK 

The work on situational awareness of ransomware attacks [13] identifies parameters for 

detecting and preventing this attack. Besides, it presents a variety of ransomware analysis 

tools, including Anubis [14], VirusShare [15], VirusTotal [16], Process Monitor [17], 

Watchdog Module [18], and mainly Cuckoo Sandbox ([14], [16], [17], [19], [20], [21]).  

Similarly, in [22], analysis is performed on a set of parameters related to ransomware 

attacks. The most commonly used metrics are convergence region (ROC) against file 

encryption, CPU utilization, valid positive rate (TPR), false-positive rate (FPR), accuracy, 

and recovery. On the other hand, according to the RWGuard system [23], the parameters 

that can influence the detection of ransomware are required packets of input and output, 

behavior, and CPU processing. 

There are different approaches to the detection and prevention levels of such attacks. 

Discovery-level investigations mention the main parameters such as registry keys, system 

file input/output activities, process activity, entropy, API function calls [24], network activity, 

and network features (protocol, source, destination IP addresses, ports, packets, duration). 

In [15], the authors present a dataset with the following parameters: Windows API calls, 

registry key operations, system file operations, file operations performance set by file 

extension, directory operations, deleted files, and character strings. Nevertheless, it 

indicates that many samples used are not reflected in the dataset; there is a lack of 

explanation of the parameters and identifiers' description, and they do not justify why they 

consider them.  Thus, studies that generate datasets provide only an overview of the 

parameters used in the ransomware attack detection process; they do not delve into their 

importance and are also not available to the scientific community.  

Several pieces of research talk about how to scan and detect ransomware, authors in [25] 

propose a technique to monitor network traffic data and extract its features. These features 

are used in ransomware classification, and the applied algorithm is the Random Forest 

binary classifier. It indicates a detection rate of 86%.     

On the other hand, data mining techniques are used in [26] to find unique association rules 

for recognizing and detecting ransomware families using a static and dynamic approach. In 

[21], the authors have proposed ransomware detection when making API calls. 

Ransomware samples run in an isolated environment to get the API call information to 
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create a feature database. Sample classification is performed using support vector 

machines. In [27], a network traffic scan has been performed for Windows ransomware. 

This network analysis is conversation-based, and detection accuracy is calculated using the 

J48 algorithm, a decision tree classifier. 

In [17], a method has been introduced to detect ransomware on virtual servers. Volatile 

memory dumps obtained from forensic memory analyses are analyzed to create meta 

characteristics. The experiment was conducted using the Volatility Foundation and Random 

Forest Classifier as a machine learning model.  According to [28], a static analysis-based 

approach to classify ransomware is proposed. Through inter-family discrimination, it obtains 

feature vectors and feeds them five machine learning methods for ransomware 

classification. The experiments achieve a binary classification accuracy of 91.4%, and this 

method can take fingerprints of the environment, which are very difficult to detect with 

automatic analysis. 

Cuckoo sandbox is often used to isolate a working space for executing ransomware-

infected files. The research papers mentioned below present the best accuracy results. In 

the article [29], the authors used sandboxing to obtain 64 features for 360 samples of 

ransomware and 532 files with other malware, and 460 samples of benign software. It is a 

somewhat limited dataset in terms of the number of samples. Using machine learning 

algorithms and values corresponding to four large feature categories: function length 

frequency, printable string information, and API functions, they got a maximum accuracy of 

0.961. The drawback is that it is unclear which specific features inside these categories are 

included in the training.  

Aditionally, using the Cuckoo sandbox in [30], the authors used the file and encryption 

features to compose a feature vector. This research achieves a 93% ransomware detection 

rate; accuracy is not reported. Another example is [31]. This article presents feature vector 

plots to distinguish a different behavior among ransomware and goodware families of 

artifacts. [32] proposes an active learning algorithm to detect ransomware using selected 

26 features, achieving a 0.879 accuracy value for ransomware detection. None of the 

mentioned research papers present their datasets, which would help replicate their work. 

As [33] states, the application of intelligent algorithms to detect ransomware is in an early 

stage but is growing. New perspectives of future developments are still ahead in this 

research area. 
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3.1. Current Research 

The evolution and impact of ransomware attacks in the last decade have revealed the 

imperative need to discover an efficient way to mitigate or avoid this threat [34]. In this 

context, several studies and proposals that aid with this purpose are shown in Table 1. 

Table 1. Summary of current research (2016 – 2022). 

Reference Year 
Keywords/Topics 

Kind of Research
 

   Review Proposal Testing 

[15] 2016 Detection, machine learning, Support Vector 

Machine (SVM), regularized logistic regression 

  X 

[14] 2016 Ransomware evolution, datasets X  X 

[35] 2018 Ransomware economic impact, bitcoin trace X   

[36] 2017 Economic analysis X   

[37] 2017 Prevention, pattern, random forest, exploit kits, 

supervised machine learning 

  X 

[38] 2016 Honeypot, detection  X X 

[39] 2017 C&C, IoT attacks X X  

[40] 2018 Detection methods, Decision Tree Classifier X  X 

[41] 2018 API calls, detection X   

[42] 2017 Detection, V-detector negative selection algorithm, 

feature extraction 

  X 

[43] 2018 Detection, prevention, entropy information   X 

[44] 2018 Ransomware taxonomy, state of the art on 

prevention, detection, and prediction. 

X   

[45] 2018 Unsupervised detection method, artificial neural 

networks, Hardware Performance Counter (HPC). 

  X 

[46] 2018 Detection, honey file, protection   X 

[47] 2018 Detection, mitigation, Software Defined Networking 

(SDN) 

  X 

[48] 2018 Detection mechanism   X 

[49] 2017 Analysis and detection, simple Logic (SP), SVM   X 

[50] 2017 Cryptoanalysis, detection X  X 

[51] 2017 Deep learning, Long-short term memory (LSTM)   X 

[52] 2018 Crypto model, encryption keys, proactive prevention   X 

[53] 2018 Dynamic analysis, anomaly detection, SVM   X 

[54] 2018 Backups, disaster recovery, risk assessment X   
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Reference Year 
Keywords/Topics 

Kind of Research
 

   Review Proposal Testing 

[55] 2017 Deep networks, detection   X 

[56] 2017 Recurrent neural network (RNN), detection   X 

[57] 2018 Mitigation, detection X X  

[58] 2017 Ransomware evolution, safety measures X   

[59] 2018 Detection, mitigation, SDN, NFVs  X  

[60] 2017 Crypto-Ransomware, bitcoin, Cyber currency  X  

[61] 2020 Static analysis, opcode, Machine learning   X 

[62] 2018 Security, model checking, android   X 

[63] 2018 Bitcoin, crypto-currency, payment X   

[64] 2018 Volatile memory forensics memory dumps   X 

[65] 2019 Deep learning, convolutional neural network, LSTM   X 

[66] 2018 Remote Desktop Protocol (RDP), detection   X 

[67] 2018 Behavioral detection, anomaly X   

[68] 2018 Detection, deception systems   X 

[69] 2018 Real time detection, access control, file operation   X 

[70] 2018 Encryptor, file protection, document editing   X 

[71] 2017 Cyber threats, security audit, penetration testing, IoT, 

privacy 

X   

[72] 2021 Ransomware, sandbox, user-friendly model, survey X X  

[73] 2020 Ransomware, Detection, Prevention X X  

[74] 2021 Machine learning, Deep learning, Ransomware, 

Ransomware analysis, Dynamic analysis; 

 X X 

[75] 2021 Intrusion detection systems, detection rate. false 

alarms 

X X  

[105] 2022 Ransomware, Open dataset, Storage access pattern, 

Machine learning, Hypervisor 

 X X 

[125] 2022 crypto ransomware, data centric, process centric, 

event-based detection, early detection, Neural 

Networks, malware, machine learning-based 

detection 

X   

[126] 2022 Network function virtualization, enterprise information 

system, IoT malware detection, adversarial malware, 

detection malware, visualization techniques, 

sandboxing 

X X  

[127] 2022 enterprise’s private cloud, virtual machines, RAM, file 

system, network feature, feature selection 

  X 
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Reference Year 
Keywords/Topics 

Kind of Research
 

   Review Proposal Testing 

[128] 2022 ransomware detection, cloud environment, volatile 

memory features, ransomware binaries and action 

sequences 

 

X X  

[129] 2022 Ransomware Classification, Feature Selection, 

Machine Learning, Neural Network, Cybersecurity 

 X X 

[130] 2022 
machine learning, classification, ransomware, 

random-forest, elbow method 

 X X 

Table 1 presents a summary of the different phases followed during an investigation. These 

are the review of the state of the art, proposal, and testing. It also shows each paper's 

keywords and central topics to facilitate future research. For instance, a ransomware 

taxonomy and its success factors are presented in [34], [67].This state of the art is focused 

on ransomware counteraction from the prevention approach and detection concept. It also 

highlights the research direction in this field and its impact [71]. Some authors show 

ransomware evolution, the most common infection, and payment methods [57], [58] They 

also present the target users, safety measures, and the market model as a business. For 

instance, a ransomware economic analysis is carried out in [35], [36] . In both approaches, 

the economic impact of ransomware is reported. They also provide an analysis of the 

payment strategies, such as bitcoins, and how they contribute to ransomware proliferation. 

We applied ransomware detection and prevention methods in our work, such as sandbox 

analysis and machine learning recognition. These kinds of approaches are detailed in [72], 

[73],  [74],  [75], [105],  [125],  [126], [127],  [128],  [129], [130]. The principal idea is to use 

the named methods to obtain a pattern that allows determining if an artifact is ransomware 

using experimentation that was carried out in different phases.  

A set of suggestions to enhance the information security risk assessment guidance, 

specifically NIST SP 800, is given in [54].This study reviews the current backup approaches 

to provide a guide to address ransomware attacks, according to NIST SP 800 security 

management. On the other side, there are proposals focused on ransomware in Android 

devices [14] or the IoT area [37]. For example, [39] propose a model for analyzing incoming 

TCP/IP traffic (header) using a command and control server (C&C) with ransomware 
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blacklists. It is important to note that the analysis of ransomware threats in Android or IoT 

devices is out of the scope of this article. 

One of the most critical challenges is to provide enhanced mechanisms to predict 

ransomware attacks before they happen and then apply countermeasures. On the one 

hand, several articles show novel detection and prediction methods [34], [38], [39]. On the 

other hand, some prevention mechanisms are presented to establish principles and 

suggestions to avoid a ransomware attack or loss of information [46], [47], [52], [54]. In [52] 

a key vault is proposed to protect and store the session keys. Furthermore, some proposals 

allow the mitigation of ransomware attacks, such as the deployment of sensors and 

actuators [59]. It considers the self-organized concept to provide a smart calibration and 

management of responses. It also contemplates the situational awareness concept of 

knowing the real situation of the protected environment. 

It is important to highlight that big companies and organizations like the European 

Commission are pushing research in information security through funded projects such as 

RAMSES [76] or CYBECO [77]. On the one hand, Supporting Cyber insurance from a 

Behavioral Choice Perspective (CYBECO) develops new tools and algorithms to build more 

secure communication and network systems. It takes into account the behavior not only of 

cyber attackers but also the owners of end devices or infrastructures. On the other hand, 

an Internet Forensic platform for tracking the money flow of financially motivated malware 

(RAMSES) facilitates digital forensic research to identify internet attackers or scams. For 

this purpose, the RAMSES project correlates and analyzes data gathered from the Internet, 

particularly malware attacks such as banking trojans or ransomware. As a result of this 

preliminary analysis, different investigations introduce concepts like pattern recognition or 

prediction techniques to facilitate preventive, reactive, and proactive responses to 

ransomware attacks. 

One of the main challenges of information security is to know what happens with the devices 

connected in a system and their communications, and more importantly, how to prevent 

and mitigate possible threats. All of these issues can be covered using a Ransomware 

Situational Model. In this context, several parameters are considered in the current 

research, such as file system operations, entropy, registry keys, checksum values, file 

hashes, disk usage, and open connections. Table 2 shows a summary of different 

parameters that were studied and evaluated in current research [13]. It also includes the 

tools used not only to deploy a secure environment for testing purposes but also the 
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programs or approaches that facilitate the gathering, correlation, and analysis of the 

information. 

The analysis presented in Table 2 has revealed that the Cuckoo [78] sandbox is the 

preferred tool for testing and evaluation. Cuckoo allows the deployment of a secure 

environment for testing with different kinds of malware. Every action carried out by the 

malware is stored (logs and reports) when an attack is simulated. One of the main 

advantages of Cuckoo is that it works in an emulated environment which is safe for the 

network.  It is worth mentioning that ransomware samples can be obtained in VirusTotal, 

VirusShare, or some authors generate or emulate their own ransomware [29]. 

 

3.2. Most used Features 

In essence, to detect a ransomware attack, most of the authors take into account the 

following features [13]: 

Content similarity and entropy: for determining how similar the data is. Entropy is based 

on the degree of randomness of the bytes in a file.  Typical file types like HTML or doc have 

a lower entropy value than binary files (exe, dll). Encryption typically produces a high 

entropy. Therefore, if the file has been changed and is too different compared to the 

expected average entropy, it can be considered a potential threat. It is important to note 

that high entropy is not a conclusive parameter to predict ransomware attacks because 

other normal processes like compression imply a high entropy value. Furthermore, newer 

versions of ransomware reduce entropy; consequently, a lower value does not guarantee a 

possible infection. Entropy can be used as a part of an attack vector to predict ransomware 

threats. 

Monitoring C&C Communications: In ransomware attacks, a C&C server propagates 

instructions to infect or take control of devices called bots. In this context, monitoring 

unusual or continuous communications with specific internet sites will be done. For this 

purpose, researchers are using innovative technologies such as SDN to block 

communication with the C&C server when it is happening. For instance, in [79]  a system to 

monitor suspicious network traffic is proposed. It blocks infected devices, in a real-time 

manner, through rules applied by the SDN controller. 



 

28 

 

Moreover, concepts like Network Function Virtualization (NFV) mitigate this problem by 

deploying specialized network functions like Deep Packet Inspectors (DDI) or honeypots. 

Besides, Domain generation algorithms (DGA) generate a set of domain names used by 

the C&C server and leave a trace in network traffic [80]. It is important to note that some 

ransomware samples do not need an internet connection to encrypt files. 

File system activity: Ransomware inevitably uses function calls (e.g., I/O Requests) to 

execute malicious operations in the OS filesystem. The system under attack can exhibit an 

abnormal file system activity since many equal file system access can be requested. The 

main suspicious activities related to the file system can include changes in Master File Table 

(MTF) and I/O Request Packets (IRP) [81]. The MTF can be encrypted during a ransomware 

attack, and the Master Boot Record (MBR) is overwritten. Thus, monitoring these elements 

is an effective strategy to detect ransomware. 

Monitoring registry values: It has been observed that several registry values are modified 

during a ransomware attack. For instance, many ransomware variants modify the values of 

HKEY_LOCAL_MACHINE\System\CurrentControlSet\control\N1s\ComputerName\Active

ComputerName     and     HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\ 

CurrentVersion  \WinLogon,  HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 

\CurrentVersion \Run.   

Similarly, the value of  HKLM\Software\Microsoft\Cryptography\Defaults\Provider Types\ 

Type 001 as the Microsoft Strong Cryptographic Provider is read [14]. 

Other variants remove the volume shadow copies (Volume Snapshot services VSS files) to 

avoid using these backups to recover the system. Finally, ransomware opens a txt 

instruction file, fills it with the image of attacker payment information, and changes the 

desktop background to the bitmap image. In other words, the HKCU\Control Panel\Desktop\ 

Wallpaper value is set to %CSIDL_DESKTOPDIRECTORY%\_Locky_recover_instructions 

.bmp [70]. In the case of encryption ransomware, crypto libraries and registers are used or 

accessed. 

Privilege Escalation: It is considered one of the most distinctive features of ransomware 

attacks. Once the malicious software is downloaded to the system, it monitors the 

environment to check its access capabilities and, if necessary, asks for administrative rights. 

This access request is externalized as an app authorization button in Android devices or a 

malicious window requesting authorization in Windows elements (update patch). Once the 
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attack obtains administrator privileges, it continues the attack by locking the victim device 

(Windows) or setting a new lock screen PIN (Android) [14]. 

Monitoring API and DLL calls: The use of APIs is one of the most common ways of 

software development. A set of procedures, protocols, and tools is provided as logical 

building blocks. The programmer puts the blocks together according to their particular 

objective through API requests and API calls. Similarly, the attacker uses the available APIs 

for executing malicious activities. Therefore, some characteristics of API calls (e.g., time, 

type, number, sequence) can be used to model the application behavior. Then, a classifier 

can be trained to detect suspicious activities. For example, a suspicious sequence in API 

Windows uses GetThreadDesktop, CreateDesktopW, and SwitchDesktop [81]. Even 

though the attacker could avoid using API calls, using native APIs requires significant work 

due to a lack of compatibility and available documentation. 

Modifications of Master Boot Record (MBR): A group of ransomware attacks is 

specialized in changing the Master Boot Record, which contains the executable boot code 

and the partition table. This attack takes advantage of the well-known position of the MBR 

(first sector of a hard disk) and the startup procedure. Then the system boot process loads 

the MBR instructions in memory and transfers them to the control system at boot time. In 

this context, the malicious software modifies the boot code with a bogus MBR that blocks 

the standard boot procedure and displays a message requesting a ransom. 

Monitoring specific file type, file path, or directories: It includes monitoring file 

modifications to find an unusual increase of particular extensions, such as .locky. It also 

oversees the Volumen Shadow Copy service (VSC) to avoid that shadow copies of the 

systems can be erased. Moreover, it is crucial to monitor URLs and web pages. 

Table 2. Summary of evaluated parameters and tools. 

Reference Year Evaluated Parameters Tools/Datasets 

[15] 2016 API invocations, registry keys, file directory VirusShare, Cuckoo 

sandbox, 

  Operations, and dropped files. VirusTotal, Matlab 

[14] 2016 Filesystem and registry in Windows; checking the PEiD, PEView tool, 

Cuckoo, 

  MD5 hash values from Virus, file system and Anubis 

  register activity, network communications  
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Reference Year Evaluated Parameters Tools/Datasets 

[38] 2016 Honeypot folder monitored with an FSRM File EventSentry, FSRM 

  Screen  

[48] 2016 The file path, time attributes, filesystem I/O activity Cuckoo, OpenSSL, 

   VirusTotal 

[37] 2017 Listing of the file path and dropped file, ransom Cuckoo, Wireshark, 

  note, network activity, analyzing application tracewrangle3, Dionaea 

  payload Honeypot 

[39] 2017 C&C communication, public key, the connection Framework Proposal 

  established between victims and the C&C server.  

  [42] 2017 Hard disk reading and writing, the encryption and Cuckoo Sandbox, Volatility 

  deletion of files, crypto APIs. Three types of  

  features: API functions, behavioral expression  

   (count IP address, ports, etc.) and memory 

feature. 

 

[49] 2017 API calls (GetModuleFileNameA, 

NtCreateSection, 

API Monitor tool, Weka 

  NtCreateFile, NtMapViewOfSection, NtWriteFile)  

[50] 2017 File system, registry, process activity, entropy, API Cuckoo, VirusTotal, Process 

  functions (ReadFile, QueryInformation), Master Monitor 

  File Tables, System Service Descriptor Table  

[51] 2017 API calls, registry values Cuckoo Sandbox 

[52] 2018 Crypto Function Hooking, CryptoAPI, File Cuckoo sandbox, Raddar, 

  recovery, SHA1 functions VirusTotal 

[55] 2017 121 API call functions (NtEnumerateValueKey, Cuckoo sandbox, 

  NtOpenSection, closesocket, TensorFlow, Open Malware, 

  CryptDecodeObjectEx, GetFileAttributesW) VirusTotal 

[56] 2017 API call sequences (NtOpenFile, 

RegOpenKeyExA, 

Cuckoo sandbox, VirusTotal 

  ioctlsocket, NtResumeThread, etc)  

[40] 2018 Network features (Protocol, source, and destination Weka, Kali Linux 

  address, ports, packets, duration)  

[41] 

 

2018 API calls (CopyFile, CreateDirectory), Windows Power Shell, bash 

  InternetOpen, CryptoDeriveKey, 

SetFileAttributes, 

scripts, ProcMon 



 

31 

 

Reference Year Evaluated Parameters Tools/Datasets 

  GetFileType, GetFileSize, CryptoGenKey,  

  CryptoDecodeObject)  

[43] 2018 The entropy value of the file was calculated (its Watchdog Module 

  format)  

[45] 2018 Cache-references, cache-misses, branch-misses 

and 

iperf tool, sandbox, Kera, 

  branches.  

[46] 2018 FIFO files, infinitive files Bash-ransomware, linux 

   suite, linux encoder, 

   OpenSSL 

[47] 2018 HTTP message sequences and their 

corresponding 

Cuckoo, Alexa websites, 

  sizes. POX 

[53] 2018 API calls Cuckoo sandbox 

[82] 2020 C&C commands, Permissions requested by 

ransomware 

Concurrency Workbench of 

New Century 

[83] 2021 C&C Communication,  Recovery of Files via Cloud 

Backup 

[84] 2020 Infected Files Generate ransomware, Attack 

ransomware on _le or 

directory, Verify encryption by 

ransomware 

[85] 2020 “Windows API calls, Windows 

Cryptographic APIs, Registry Key” 

Machine Learning 

[128] 2022 Ransomware binaries and action sequences 

 

Advanced machine learning 

techniques 

[129] 2022 SizeOfOptionalHeader, MajorLinkerVersion, 

AddressOfEntryPoint, SectionAlignment, 

MinorOperatingSystemVersion, 

SizeOfHeaders, SizeOfStackReserve, 

LoaderFlags, SectionsMinEntropy, 

SectionsMaxEntropy, SectionMaxRawsize, 

SectionsMinVirtualsize, ResourcesMinEntropy 

Multiple machine learning 

algorithms: Decision Tree 

(DT), Random Forest (RF), 

Naïve Bayes (NB), Logistic 

Regression (LR) as well as 

Neural Network (NN)-based 

classifiers 

[130] 2022     SectionsMaxEntropy and ResourcesMaxEntropy Random forest 

 

  



 

32 

 

3.3. Dataset Repositories for Benign and Ransomware Samples 

Many ransomware studies use samples from VirusShare9, theZoo10 , and 

hybridanalysis.com. They form repositories with different ratios between the number of 

benign and ransomware artifacts. Some repositories include general malware artifacts.  

Table 3 presents a summary of ransomware repositories published from 2020 to 2022, 

with their respective number of samples [86].  

Table 3. Ransomware datasets (2020 -2022) 

Study/year Tool Sample types Number of 

artifacts 

[87]/2020 Cuckoo Ransomware  1,354 

Goodware 1,358 

[88]2020 Intel Pin 3.2 Ransomware 1,000 

Goodware 300 

Malware 900 

[89]]/2020 Log Parser Ransomware logs 17 

Goodware logs 103,330 

[90]/2020 Cuckoo Ransomware 
NA 

Goodware 

[91]/2020 Cuckoo Ransomware 904 

Goodware 942 

[92]/2020 Events monitoring Ransomware 80 

Goodware 76 

[93]/2020 Sandbox Ransomware 550 

Goodware 540 

[94]/2020 Cuckoo Ransomware 1,254 

[95]/2020 Weka and Python to develop 

goodware 

Ransomware 35,015 

Goodware 500 

Malware 500 

[96]/2020 Cuckoo Ransomware 1,232 

Goodware 1,308 

[97]/2020 Cuckoo Ransomware  2,000 

Goodware 2,000 

[98]/2020 Not mentioned Ransomware 35,369 

                                                

9 https://www.impactcybertrust.org/dataset_view?idDataset=1271 
10 https://github.com/ytisf/theZoo 
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Study/year Tool Sample types Number of 

artifacts 

Goodware 43,191 

[99]/2020 Cuckoo Ransomware 1,000 

Goodware 1,000 

[100]/2021 Cuckoo Ransomware 80 

Non-ransomware 80 

[101]/2020 Genymotion Ransomware 400 

Goodware 400 

[102]/2021 I/O from process execution Ransomware 206 

[103]/2020 Not mentioned Ransomware 272 

[104]/2020 Cuckoo Ransomware 625 

Goodware 103 

  [105]/2022 Cuckoo Ransomware 1,044 

  [129]/2022 Not mentioned Ransomware 96,632 

  Goodware 41,414 

  [130]/2022 Not mentioned Ransomware 96,632 

  Goodware 41,414 

Table 4 shows relevant characteristics of previous studies to be used in subsequent 

sections of this thesis to compare our analysis with that of other researchers related to 

dynamic features selected, machine learning algorithms used or not, the number of samples 

of ransomware and goodware, platforms, and performance. Table 4 also demonstrates that 

most authors do not deliver a feature dataset. 

 

Table 4. Characteristics of dynamic analysis solutions 

Study Features used 
in Dynamic 

Analysis 

Machine Learning 
based/Algorithms 

used 

Dataset is 
composed of 
samples of  

Feature 
dataset 
made 

available 

Platforms Performance 

[14]  Filesystem and 
registry in 
Windows. 

Permission 
monitoring in 

Android. 

No Ransomware 
of 25 families 

No Windows 
10/Android 

Not mentioned 

[15] 
 

API calls, 
Registry Key 

Operations, File 
/Directory 
System.  

Yes / NB, and  SVM 582 
ransomware of  

11 families, 
and 942 

goodware  

No Windows ROC: 0.995 
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[16] File system, 
Access 

Patterns, and 
I/O Data Buffer 

Entropy. 

No 148,223 
general 
malware  

No Windows Detection rate 
96.3% 

[17] File System, I/O 
monitoring 

No 715 
ransomware 

No Windows 7 Detection rate 
96.7% 

[18] 
 

Entropy analysis No Not mentioned No Windows Accuracy 92% 

[19]  
 

HTTP traffic 
characteristics 

No 750 
CryptoWall 4.0 
ransomware 
traffic - 750 

Locky 
ransomware 

traffic  

No Windows Detection rate 
97%-98% 

[21]  
 

API Calls Yes / SVM 588 logs, 312 
goodware  
and 276 

ransomware 
logs 

No Windows Accuracy 
97.48% 

[23] 
 

IRP  Yes / NB, LR, DT, 
RF 

261 benign 
and malicious 

processes 
 

No Windows Accuracy: 
NB: 80.07%, 
LR: 81.22%, 
DT: 89.27%, 
RF: 96.55% 

[24]  
 

API Calls Yes / RF, SVM, SL, 
and NB  

 

168 
ransomware  

No Windows 7 Maximum 
accuracy SL: 

98.2% 

[25] 
 

Command and 
control (C&C) 

server 

Yes / RF 265 
ransomware 

related 
flows. 

No Windows Accuracy with 
10 fold cross 

validation 87% 

[26] 
 

Portable 
Executable (PE) 

File 

No 450 
ransomware  

No Windows Accuracy 70% 

[27] 
 

Network Traffic Yes / DT (J48 
classifier) 

210 
ransomware, 
264 benign  

Dataset 
sample 
showed 

Windows Maximum F-
measure 
96.8% 

[28]  
 

Ransomware 
Opcodes 
(Machine 
Language 

Instructions) 

Yes / DT, RF, KNN, 
NB, GBDT  

 

1787 
ransomware  

No Windows Maximum 
accuracy 

99.3%  

[29] 
 

API Calls Yes / SVM, DT, RF, 
GBDT 

360 
ransomware, 
532 general 

malware, and 
460 benign 

software  

No Windows  Maximum 
Accuracy 

96.1% 

[30] API function 
calls, counts of 
the behavioral 
features, and 
counts of the 

memory 
features 

No 1000 
ransomware, 
1000 benign 

software  

No Windows 
XP 

Detection rate 
90% 

[31] 
 

API Calls, 
File/Directory 

System, 
Shannon’s 

Yes / LR, SVM, RF, 
GBDT, ANN  

 

574 
ransomware 

No Windows 
7, 

Windows 
8.1 

Detection rate 
98.25% 
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Many ransomware studies use samples from sources already mentioned, such as 

VirusShare11, theZoo12, VirusTotal, Anubis, and hybridanalysis.com. They form repositories 

with different ratios between the number of benign and ransomware artifacts. Some 

repositories include general malware artifacts. Ransomware datasets are found in [87]. 

These datasets contain varied quantities of ransomware and goodware samples. Some use 

these datasets in isolated testbed tools. It is necessary to emphasize that these datasets 

are only a collection of malware and goodware obtained from different sources. Any of them 

have relevant features extracted from the artifacts. Also, as stated before, these datasets 

are not readily accessible.  

As far as the author knows, there is no accessible dataset with a robust set of dynamic 

characteristics, making it challenging to develop detection and prevention solutions for the 

constantly evolving signature-changing ransomware. A complete dataset of dynamic 

                                                

11 https://www.impactcybertrust.org/dataset_view?idDataset=1271 
12 https://github.com/ytisf/theZoo 

Entropy of File 
Writes 

[32] Selects key 
features using 
Multi-Objective 

Grey Wolf 
Optimization 

(MOGWO) and 
Binary Cuckoo 
Search (BCS) 

algorithms 

Yes / NB, RF, and 
SMO  

582 
ransomware, 

and 942 
goodware 

No Windows Accuracy 
NB: 79.3% 
RF: 82.67, 
SMO: 82% 

[79]  
 

C&C 
communications 

No Database of 
malicious 

URLs  

No - Time to disrupt 
the 

connection: 
100 ms 

 

[81]  Master File 
Table (MTF) and 

I/O Request 
Packets (IRP) 

 

No Logs with 
2000 user 
activity and 

2000 
ransomware 

activity 

No Not 
mentioned 

Accuracy 
97.4% 

[105] I/O operation, 
LBA, and 
Entropy 

Yes / RF, SVM, 
KNN, CNN  

7 ransomware 
families 

Yes Windows 
7, 

Windows 
Server 
2008 

F-measure 
from 0.57 to 

0.99 

[89] Semantic 
Information from 

Logs 

Yes / Bi-LSTM  Logs  No Linux 
Server, 

Windows 7 

Accuracy 
96.5% - 99.7% 
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features is needed to be used as a basis for intelligent machine learning with the capability 

to produce models to detect this threat before it causes damage. For this reason, this 

research deals with these two issues: the generation of a relevant feature dataset and its 

use to generate machine learning models to differentiate ransomware from goodware.  

On the other hand, when other authors use dynamic features, they only use some attributes, 

for example, attributes related to the network, API and DLL calls, or file systems. For better 

classification results that even detect new variants, it is necessary to use a more complete 

description of the ransomware activities delineated by the presence of all the relevant 

dynamic features. 

The performance of the studies in Table 4 uses several metrics. It varies from an accuracy 

of 70% to a maximum of 99.7%; a maximum F-measure of 0.99; detection rate with values 

from 90% to 98.25%; one paper presents a ROC of 0.995; and another shows a response 

time of 100ns to disrupt the connection for C&C communication before the encryption is 

made.  

3.4. Comparison with Previous Research 

The experiments carried out by other authors cannot be reproduced because we do not 

have enough description of the environment, the datasets, or the specific dynamic 

parameters with which they work. Other papers only state the number of ransomware and 

goodware samples used, their sources, such as VirusTotal or VirusShare, and a not enough 

detailed description of the dynamic parameters applied. Therefore, the information in Table 

4 helps compare the methods and results of other studies with the ones in our research. 

Our results are comparable to or better than those reported in other studies with an almost 

perfect 10-fold cross-validation accuracy using random forest and gradient boosted trees. 

It is important to state that the authors of the present paper initially conducted experiments 

with partial sets of relevant features in the initial stages of the work. For instance, the 

researchers used a partial set of relevant features over the training dataset. They obtained 

results similar to the ones obtained with the complete set of 50 attributes, as seen in Table 

21. The characteristics used correspond to procmemory: file_created; behavior (processes 

and apistarts): regkey_read, dll_loaded; and network: udp, command_line, domain, tcp. 

With these parameters, the accuracy results for training are good and go from 63.18% to 

99.73%. However, using this partial set of parameters, these algorithms have a significantly 
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lower performance in testing with variants not present in the training set, with a higher 

accuracy at a value of 54% for gradient boosted trees algorithms. 

Therefore, the conclusion is that it is necessary to use the 50 chosen attributes that the 

researchers include in the feature dataset to ensure excellent performance in detecting 

ransomware variants not present in the training set. This is an essential differentiation of 

our work, the ability to distinguish new variants due to the combination of the generation of 

an input vector composed of a complete set of relevant features and the use of machine 

learning algorithms fed with these attributes. 
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4. MATERIALS AND METHODS 

Our research conducts dynamic analysis using a sandbox (cuckoo). Next, we present some 

definitions related to this tool. 

4.1. Cuckoo Sandbox 

A sandbox is an isolated environment that allows the malware to be executed by 

implementing specific security mechanisms to guarantee the environment's integrity [106]. 

A sandbox allows collecting information about the behavior of the artifact executed within it. 

This information is later sent back to the environment where the sandbox is to analyze the 

recorded behavior [107]. The implementation of a sandbox varies depending on what you 

want to monitor [106]; however, a sandbox based on virtual machines is commonly used 

[107]. 

A virtual machine can be perceived as a computer embedded within another computer. In 

itself, you have a host operating system that can host one or more guest operating systems 

so that the guest system cannot directly affect the integrity of the host system. Multiple 

software solutions achieve this virtualization mode, such as VMWare Player, Virtualbox, 

and Microsoft Hyper-V. In addition, this type of program allows you to create snapshots 

which are an image of a specific virtual machine at a particular time [10]. With these 

snapshots, the state of a virtual machine can be restored once an artifact's execution and 

dynamic analysis process has finished [107].For dynamic malware analysis, it is necessary 

to have a base snapshot to be able to reverse all the negative effects that malicious software 

has caused on a virtual machine. Next, the flow of the analysis of a software artifact with 

the use of a sandbox is described [107]. 

1. The host system searches for a free sandbox in case there is more than one available. 

2. The host uses the base snapshot to reset the selected sandbox to its initial state and 
starts it. 

3. The host establishes a communication channel with the sandbox to monitor and 
exchange information. 

4. The artifact is transferred to the sandbox by the host system and executed. 

5. The host uses multiple tools to monitor and record any activity or change within the 
sandbox at the network level, file system, and operating system, among others. 
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6. The host proceeds to save all the information collected from the execution of the artifact 
in the sandbox into one or multiple files for later review. 

For this analysis process to be successful, the sandbox must be as similar as possible to a 

standard user's computer. Otherwise, the artifact may detect that it is being analyzed and 

may not run [107]. 

4.2. Feature Extraction Tool  

Sampling artifacts (Goodware and Ransomware) and running tests on the Cuckoo Sandbox 

system allowed the creation of a folder containing reports of the different analyses. Figure 

8 shows the general structure of the JSON reports generated in the cuckoo sandbox [108].  

A report has a tree-based structure. An application to select features in the different levels 

was developed. For example, the features marked with yellow were chosen in the first stage. 

The first level contains several categories such as ‘Info,’ ‘procmemory.’ To begin the 

extraction process, the application visualizes the type of data stored in each category.  The 

JSON Cuckoo Sandbox reports are recursively loaded since there were nested directories, 

and the program looks up every json file contained in a given directory. 

 

Author: Juan A. Herrera Silva 

Figure 8. General structure of the JSON reports 
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Figure 9 presents the GUI of the extraction tool used to generate the input vector for the 

machine learning algorithms, with the final 50 features: 

Select a directory button will make a dialog box appear so that we can select the directory 

where our JSON reports reside. 

Family and Artifact checkbox: This option allows us to obtain the ‘Family’ and ‘Artifact’ 

columns in our dataset. We must have a specific directory hierarchy to do this. 

Select Features checkbox trees: A series of checkboxes we can use to define which 

features we want to extract from the JSON reports. 

Extraction Method button group: To select the extraction method to use. 

 

Figure 9. GUI components of the feature extraction application. 

For instance, the ‘network’ category contains features like ‘hosts’ and ‘dns.’ ‘dns’ includes 

the ‘request’ feature. The program extracts all data collected in these features and writes 
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the data contained in a list of any primitive data type or a list of dictionaries to a CSV 

extension file (Figure 10). This file is the feature vector inputs in the machine learning 

algorithms to generate models to detect locker ransomware, encryptor ransomware, or 

goodware.  Annex A contains more information about this application. Annex B presents 

examples of its use. 
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Author: Juan A. Herrera Silva  

Figure 10. CSV file with extracted features 

 

artifact family requests udp hosts tcp domains regkey_read

Ryuk L slscr.update.microsoft.com{'src': '192.168.56.50', 'dst': '192.168.56.255', 'offset': 247673, 'time': 5.289068937301636, 'dport': 137, 'sport': 137}172.217.2.78 {'src': '172.217.8.131', 'dst': '192.168.56.50', 'offset': 1382, 'time': 110.11897492408752, 'dport': 49750, 'sport': 443}{'ip': '', 'domain': 'DESKTOP-49GRPRH.local'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\ActivateInSharedBroker

Ryuk L www.bing.com {'src': '192.168.56.50', 'dst': '192.168.56.255', 'offset': 251993, 'time': 106.72884392738342, 'dport': 138, 'sport': 138}172.217.8.131 {'src': '192.168.56.50', 'dst': '13.107.246.13', 'offset': 1906, 'time': 47.79032897949219, 'dport': 443, 'sport': 49716}{'ip': '52.191.219.104', 'domain': 'settings-win.data.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\AppID

Ryuk L r2---sn-jou-0pve7.gvt1.com{'src': '192.168.56.50', 'dst': '224.0.0.251', 'offset': 484921, 'time': 3.2075510025024414, 'dport': 5353, 'sport': 5353}13.107.246.13 {'src': '192.168.56.50', 'dst': '13.107.4.52', 'offset': 13019, 'time': 3.1798360347747803, 'dport': 80, 'sport': 49675}{'ip': '172.217.3.131', 'domain': 'update.googleapis.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{c53e07ec-25f3-4093-aa39-fc67ea22e99d}\InProcServer32\InprocServer32

Ryuk L pti.store.microsoft.com{'src': '192.168.56.50', 'dst': '224.0.0.252', 'offset': 485849, 'time': 5.317975044250488, 'dport': 5355, 'sport': 55905}13.107.4.52 {'src': '192.168.56.50', 'dst': '13.88.21.125', 'offset': 14540, 'time': 48.02509784698486, 'dport': 443, 'sport': 49715}{'ip': '168.61.161.212', 'domain': 'watson.telemetry.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\ServiceName

Ryuk L DESKTOP-49GRPRH.local{'src': '192.168.56.50', 'dst': '224.0.0.252', 'offset': 486031, 'time': 3.208366870880127, 'dport': 5355, 'sport': 61750}13.88.21.125 {'src': '192.168.56.50', 'dst': '142.250.64.206', 'offset': 26760, 'time': 88.32839798927307, 'dport': 443, 'sport': 49739}{'ip': '204.79.197.200', 'domain': 'www.bing.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{657A8842-0B5E-40E1-B8CB-9AAFACC33AAB}\ProxyStubClsid32\(Default)

Ryuk L client.wns.windows.com{'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 511845, 'time': 3.6067328453063965, 'dport': 3702, 'sport': 54295}142.250.64.206 {'src': '192.168.56.50', 'dst': '142.250.64.206', 'offset': 27332, 'time': 96.87570595741272, 'dport': 443, 'sport': 49753}{'ip': '13.107.246.13', 'domain': 'pti.store.microsoft.com'}HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\CPC\Volume\{5840cd61-0000-0000-0000-100000000000}\Generation

Ryuk L dns.msftncsi.com {'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 517301, 'time': 9.401492834091187, 'dport': 3702, 'sport': 55906}172.217.8.99 {'src': '192.168.56.50', 'dst': '172.217.8.99', 'offset': 34010, 'time': 41.226810932159424, 'dport': 80, 'sport': 49693}{'ip': '13.107.4.52', 'domain': 'www.msftconnecttest.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\Permissions

Ryuk L ctldl.windowsupdate.com{'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 536397, 'time': 3.2882020473480225, 'dport': 3702, 'sport': 61341}191.232.139.2 {'src': '192.168.56.50', 'dst': '172.217.8.99', 'offset': 37047, 'time': 91.38939905166626, 'dport': 443, 'sport': 49750}{'ip': '52.242.101.226', 'domain': 'slscr.update.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\ActivationType

Ryuk L go.microsoft.com {'src': '192.168.56.50', 'dst': '239.255.255.250', 'offset': 545469, 'time': 5.3434059619903564, 'dport': 1900, 'sport': 61753}192.16.58.8 {'src': '192.168.56.50', 'dst': '191.232.139.2', 'offset': 47620, 'time': 148.77478003501892, 'dport': 443, 'sport': 49758}{'ip': '40.125.122.151', 'domain': 'fe3cr.delivery.mp.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{8645456f-d9a2-4b82-afec-58f0e8df0acf}\ProxyStubClsid32\(Default)

Ryuk L clients2.google.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2925720, 'time': 32.08410286903381, 'dport': 53, 'sport': 49447}204.79.197.200 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 240329, 'time': 24.43367886543274, 'dport': 80, 'sport': 49687}{'ip': '40.126.0.67', 'domain': 'login.live.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\Permissions

Ryuk L settings-win.data.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926042, 'time': 32.29827094078064, 'dport': 53, 'sport': 50547}205.185.216.10 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 242227, 'time': 26.111546993255615, 'dport': 80, 'sport': 49689}{'ip': '23.47.69.106', 'domain': 'www.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\ActivateOnHostFlags

Ryuk L displaycatalog.mp.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926252, 'time': 47.24130988121033, 'dport': 53, 'sport': 51165}216.58.192.46 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 244124, 'time': 29.581557989120483, 'dport': 80, 'sport': 49690}{'ip': '142.250.64.206', 'domain': 'clients2.google.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\TrustLevel

Ryuk L redirector.gvt1.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926582, 'time': 39.67796301841736, 'dport': 53, 'sport': 51691}23.14.81.129 {'src': '192.168.56.50', 'dst': '192.16.58.8', 'offset': 246028, 'time': 102.9298779964447, 'dport': 80, 'sport': 49756}{'ip': '131.107.255.255', 'domain': 'dns.msftncsi.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\ActivateOnHostFlags

Ryuk L www.msftconnecttest.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2926884, 'time': 148.6764178276062, 'dport': 53, 'sport': 53476}23.47.68.94 {'src': '192.168.56.50', 'dst': '204.79.197.200', 'offset': 252745, 'time': 149.01046204566956, 'dport': 443, 'sport': 49759}{'ip': '201.219.34.141', 'domain': 'r2---sn-jou-0pve7.gvt1.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{78662bbb-1464-4279-b5ff-ffccb2bc6529}\ProxyStubClsid32\(Default)

Ryuk L fe3cr.delivery.mp.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2927208, 'time': 47.47233295440674, 'dport': 53, 'sport': 53826}23.47.69.106 {'src': '192.168.56.50', 'dst': '204.79.197.200', 'offset': 447199, 'time': 149.0102880001068, 'dport': 443, 'sport': 49761}{'ip': '23.78.97.156', 'domain': 'go.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Storage.Streams.DataWriter\TrustLevel

Ryuk L www.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2927597, 'time': 2.2842659950256348, 'dport': 53, 'sport': 54294}40.125.122.176 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 457014, 'time': 21.234046936035156, 'dport': 80, 'sport': 49684}{'ip': '192.16.58.8', 'domain': 'ocsp.digicert.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\ExePath

Ryuk L update.googleapis.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2927893, 'time': 40.966691970825195, 'dport': 53, 'sport': 54905}40.126.5.36 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 463766, 'time': 21.228873014450073, 'dport': 80, 'sport': 49685}{'ip': '172.217.0.174', 'domain': 'redirector.gvt1.com'}HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Nls\Sorting\Versions\000602xx

Ryuk L fs.microsoft.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2928306, 'time': 148.257257938385, 'dport': 53, 'sport': 55235}40.88.32.150 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 470588, 'time': 94.43559002876282, 'dport': 80, 'sport': 49751}{'ip': '52.254.96.93', 'domain': 'displaycatalog.mp.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\Server

Ryuk L ocsp.digicert.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2928611, 'time': 16.786031007766724, 'dport': 53, 'sport': 56170}52.147.198.201 {'src': '192.168.56.50', 'dst': '205.185.216.10', 'offset': 480573, 'time': 103.20264601707458, 'dport': 80, 'sport': 49757}{'ip': '192.16.49.143', 'domain': 'ctldl.windowsupdate.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{89bc3f49-f8d9-5103-ba13-de497e609167}\ProxyStubClsid32\(Default)

Ryuk L watson.telemetry.microsoft.com{'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2929087, 'time': 159.9038529396057, 'dport': 53, 'sport': 56690}52.167.249.196 {'src': '192.168.56.50', 'dst': '216.58.192.46', 'offset': 481980, 'time': 97.05326986312866, 'dport': 80, 'sport': 49754}{'ip': '23.47.68.94', 'domain': 'fs.microsoft.com'}HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\Identity

Ryuk L login.live.com {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2929417, 'time': 149.0616660118103, 'dport': 53, 'sport': 56935}52.177.165.30 {'src': '192.168.56.50', 'dst': '23.14.81.129', 'offset': 486447, 'time': 42.24982690811157, 'dport': 443, 'sport': 49701}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.ApplicationExtension\RemoteServer

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2929770, 'time': 72.19026494026184, 'dport': 53, 'sport': 57253}52.191.219.104 {'src': '192.168.56.50', 'dst': '23.47.68.94', 'offset': 495641, 'time': 61.88777804374695, 'dport': 443, 'sport': 49733}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.ApplicationExtension\Threading

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930000, 'time': 76.76400685310364, 'dport': 53, 'sport': 57709}52.251.11.100 {'src': '192.168.56.50', 'dst': '23.47.69.106', 'offset': 505196, 'time': 150.4104459285736, 'dport': 80, 'sport': 49762}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.ApplicationExtension\ActivateOnHostFlags

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930330, 'time': 4.830180883407593, 'dport': 53, 'sport': 58697}8.8.8.8 {'src': '192.168.56.50', 'dst': '23.47.69.106', 'offset': 507677, 'time': 157.83673191070557, 'dport': 80, 'sport': 49764}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\ActivateInSharedBroker

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930607, 'time': 51.30108284950256, 'dport': 53, 'sport': 58739}201.219.34.141 {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 551511, 'time': 42.354718923568726, 'dport': 443, 'sport': 49702}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.FileTypeAssociation\DllPath

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2930884, 'time': 4.676063060760498, 'dport': 53, 'sport': 59010}52.177.166.224 {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 584332, 'time': 71.25142002105713, 'dport': 443, 'sport': 49737}N/A HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\MountPoints2\CPC\Volume\{5840cd61-0000-0000-0000-402400000000}\Data

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2931084, 'time': 75.19516801834106, 'dport': 53, 'sport': 59389}N/A {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 589427, 'time': 81.8621678352356, 'dport': 443, 'sport': 49748}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Storage.Streams.DataWriter\ActivateInBrokerForMediumILContainer

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2931560, 'time': 97.17227792739868, 'dport': 53, 'sport': 59618}N/A {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 628341, 'time': 83.35698294639587, 'dport': 443, 'sport': 49749}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\AppId

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2931810, 'time': 39.92110800743103, 'dport': 53, 'sport': 59954}N/A {'src': '192.168.56.50', 'dst': '40.125.122.176', 'offset': 671408, 'time': 94.79088091850281, 'dport': 443, 'sport': 49752}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\Permissions

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932089, 'time': 24.211379051208496, 'dport': 53, 'sport': 60936}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 709967, 'time': 17.508342027664185, 'dport': 443, 'sport': 49682}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\Windows.Internal.StateRepository.Application\ActivateAsUser

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932323, 'time': 96.86789393424988, 'dport': 53, 'sport': 61268}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 752405, 'time': 17.51578187942505, 'dport': 443, 'sport': 49683}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\Server\StateRepository\ServerType

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932529, 'time': 24.780714988708496, 'dport': 53, 'sport': 63044}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 777779, 'time': 23.634567975997925, 'dport': 443, 'sport': 49686}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\Interface\{1bb373e7-f9b5-5c96-a392-cb957cb3ee66}\ProxyStubClsid32\(Default)

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2932878, 'time': 20.602656841278076, 'dport': 53, 'sport': 63058}N/A {'src': '192.168.56.50', 'dst': '40.126.5.36', 'offset': 818662, 'time': 75.57214999198914, 'dport': 443, 'sport': 49742}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\InProcServer32\InprocServer32

Ryuk L N/A {'src': '192.168.56.50', 'dst': '8.8.8.8', 'offset': 2933273, 'time': 61.72096300125122, 'dport': 53, 'sport': 64133}N/A {'src': '192.168.56.50', 'dst': '40.88.32.150', 'offset': 860626, 'time': 77.07390189170837, 'dport': 443, 'sport': 49745}N/A HKEY_LOCAL_MACHINE\SOFTWARE\Classes\WOW6432Node\CLSID\{95E15D0A-66E6-93D9-C53C-76E6219D3341}\InProcServer32\(Default)
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4.4. Phases of Experimentation  

In this research, we conduct experimentation in three different phases as part of the 

quantitative - experimental research. Table 5 describes these different stages. Phase 

previous allowed generating learning models with a somewhat unrealistic prediction value, 

reaching 100% accuracy because it was a one-class classification that did not include 

goodware; this phase used a dataset generated only with ransomware artifacts and seven 

features.  

Table 5. Description of the experimental phases. 

Phases Ransomware Goodware Features Dataset 

(rows) 

Dataset 

(columns) 

# 

Sandboxing

experiments 

Phase 

previous (0) 

5 - 8 6.783 10 100 

Phase initial 

(1) 

10 10 8 47.959 10 380 

Phase 

analysis (2) 

10 10 5 (group of 

features) 

62.989 16 380 

Phase final 

(3) 

20 20 50 1.424.344 50 2000 

 

Table 6 describes the characteristics of the objects that could be selected as features for the 

input vector that will be fed to the classification algorithm. A detailed description of these 

features can be found in Annex C.  It was noticed that these predictive models would not be 

valid because the dataset was not balanced, and there was a bias in the classification of the 

only one majority class. However, this was a good first approximation for generating a 

ransomware detection dataset. 
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Table 6. Feature description 

Object Description Feature Explanation Reason for Choosing the Feature 

PROCMEMORY It allows the creation 

of memory dumps 

for each analyzed 

process (before they 

finish or before the 

analysis ends). 

File File created as a 

memory dump 

The feature is chosen because this 

information allows memory forensics 

monitoring file modifications to find 

an unusual increase in particular 

extensions. 

URLs URLs generated 

during the 

execution of 

memory 

processes 

The feature is chosen because it 

stores a list of URLs that can be 

modeled as suspicious. 

PID Process identifier The feature is chosen because it 

identifies the generated file (file). 

name Name of the 

process in 

memory 

The feature is chosen because it 

identifies the name of a possible 

suspicious process. 

types Artifact type The feature is chosen because it 

identifies the type of artifact. 

URLs URLs used by the 

process in 

memory 

The feature is chosen because it 

identifies URLs used in memory by 

the process. 

path Memory process 

storage directory 

The feature is chosen because it 

identifies the directory. 

EXTRACTED It contains 

information about 

scripts executed by 

an artifact during 

artifact analysis. 

info Information of the 

script in question 

The feature is chosen because it 

identifies information about scripts 

that could be used during attacks. 

program Type of program 

executing the 

script 

The feature is chosen because it 

identifies the program that executes 

possible malicious scripts. 

NETWORK 

      

          

Includes information 

on the network 

infrastructure used 

during the analyses 

dns_servers DNS servers 

involved in the 

analysis 

The feature is chosen due to 

communication with external domain 

servers. DNS sub-characteristics 

(request). 

mitm Network analysis 

to verify the type 

of attacks 

man-in-the-middle 

The feature is chosen because it 

identifies attacks man-in-the-middle 

where a perpetrator is positioned in 

an exchange between a user and an 

application. 

dead_hosts Hosts down during 

data transmission 

The feature is chosen because it 

identifies hosts down, which could be 

one of the effects of ransomware. 

udp network analysis 

of the udp protocol 

The feature is chosen due to the use 

of communication via UDP protocol. 

It corresponds to the udp port 

number that ransomware could 

open. 

tcp network analysis 

of the tcp protocol 

The feature is chosen due to the use 

of communication via TCP protocol. 

It corresponds to the tcp port 

number that ransomware could 

open. 
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Object Description Feature Explanation Reason for Choosing the Feature 

hosts hosts involved in 

the analysis. Help 

create blacklists 

The feature is chosen because of the 

communication with a malicious host. 

With this information, we can create 

blacklists.  

domain Domains involved in 

communication 

The feature is chosen because 

communication with other domains 

may be a clue for identifying 

ransomware. 

request Domains to which 

requests were 

sent (queries) 

DNS 

The feature is chosen because it 

serves to monitor possible suspicious 

requests. 

SIGNATURES It contains 

information about 

tasks or processes 

before, during, and 

after the analysis 

and the API calls 

executed by the 

analyzed artifact. 

families A list of malware 

family names 

The feature is chosen because it 

identifies requests that were sent. 

description Signature 

Description 

The feature is chosen because it 

supplements information about 

possible ransomware. 

name Signature name The feature is chosen because it 

supplements information about 

possible ransomware. 

category API call category The feature is chosen because it 

supplements information about 

possible ransomware. The category 

of the API calls can be used to 

model the application behavior. 

stacktrace Execution stack 

related to a 

api call 

The feature is chosen because it 

supplements information about 

possible ransomware. The 

stacktrace of the API calls can be 

used to model the application 

behavior. 

api API call in 

question 

The feature is chosen because it 

supplements information about 

possible ransomware. Some 

characteristics of the API calls can 

be used to model the application 

behavior. 

arguments Arguments of the 

API call in 

question 

The feature is chosen because it 

supplements information about 

possible ransomware. Arguments of 

the API call can be used to model 

the application behavior. 

STATIC Contains 

information about a 

static analysis 

performed by 

Cuckoo in case the 

analyzed artifact is 

of type Portable 

Executable (PE). 

imported_dll

_count 

Number of system 

DLLs 

imported by 

artifact 

The feature is chosen because it 

contains artifact information when the 

artifact is portable executable. 

dll System DLL 

libraries used by 

the 

artifact during 

analysis 

The feature is chosen because it 

contains artifact information when the 

artifact is portable executable. 

name artifact name The feature is chosen because it 

contains artifact information when the 

artifact is portable executable. 
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Object Description Feature Explanation Reason for Choosing the Feature 

filetype artifact type The feature is chosen because it 

contains artifact information when the 

artifact is portable executable. 

entropy Entropy level of 

the artifact in 

question 

Encryption changes the content. 

Therefore, it has a higher entropy 

value. This characteristic could help 

to detect encryption and 

ransomware; thus, it was selected. 

name Sections found 

within the artifact 

The feature is chosen because it 

contains artifact information when the 

artifact is portable executable. 

BEHAVIOR It allows seeing the 

behavior of 

ransomware, that is, 

to see the 

processes that the 

ransomware 

performs, libraries to 

which it makes calls, 

registry keys that 

affect 

Processes Processes carried 

out by the device 

The feature is chosen because 

processes modify the infected 

system. The authors selected sub-

characteristics processes 

(process_path, pid, process_name, 

command_line, and ppid). 

Processtree executed child 

processes derived 

from the process 

tree 

The feature is chosen because 

processtree contains subprocesses 

that modify the infected system. The 

authors selected sub-characteristics 

processtree (process_name, 

command_line, and children). 

Summary Summary of files, 

log keys, 

directories, and 

commands 

involved during 

the execution of 

processes 

The feature is chosen because it 

contains parameters that affect 

infected systems. 

The sub-characteristics summary 

(regKeys) is chosen because 

register values are modified during a 

ransomware attack. In addition, the 

sub-characteristics (file_created, 

dll_loaded, wmi_query, 

command_line, file_read, and 

directory_enumerated) are chosen 

because ransomware uses these 

function calls to execute malicious 

operations in the OS_file system. 

DEBUG It contains 

information about 

the analysis 

performed on an 

artifact. 

action Actions recorded 

during analysis 

This feature was selected because it 

gives information about the Cuckoo 

and its actions during the 

experiments' execution.  

errors Errors logged 

during analysis 

This feature was selected because it 

gives information about the Cuckoo 

and its actions during the 

experiments' execution.  

log  

Various 

information about 

the analysis 

executed 

This feature is selected because it 

gives information about all the 

occurrences inside the cuckoo 

sandbox during the experiments’ 

execution. 
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Annex C describes in detail the main objects such as info, procmemory, target, extracted, 

buffer, network, signatures, static, dropped, behavior, debug, and their respective features, 

which are present in a .json file.  There is a total of 326 features, of which a sweep of all of 

them was made, reviewing their behavior, what they represented and their main occurrence 

in the JSON file.  The main features that were selected for their Ransomware behavior in 

the previous, initial and analysis phases are highlighted in yellow. For the final phase, the 

features highlighted in light blue and purple were selected, giving a total of 64 features 

selected with an engineering procedure.  After which, an automatic feature selection method 

was used, which is the Mutual Information Matrix and it can be seen which features have a 

high correlation with each other and these features that are more correlated are the ones 

that can be removed for selection.  So, using this criterion we removed 14 features and 

worked with the final 50 features for modeling, since they have to do with the behavior of 

ransomware and have relevance because they are not redundant, since they are not related 

to others. 

Phases Initial and Analysis 

In phase one, it was considered the incorporation of more ransomware artifacts and, at the 

same time, the use of goodware to balance the dataset. We used the same seven features 

to obtain new predictive models, with the applied algorithms observed that the models did 

not exceed 85% accuracy. 

During experimentation, Phase analysis was developed to extend the dataset towards 

accuracy improvement. It had the same amount of Ransomware and goodware artifacts, 

and it had six more features depending on the analysis of the MITRE ATT&CK matrix.  

It should be emphasized that in the analysis of the .json files, a set of features was chosen 

in two levels, starting with the superior one in the .json files. From the first stage analysis, 

the conclusion is that the regkey_read feature most affects the system due to its density in 

the .json file's ransomware logs.  

The same criteria were chosen, and the UDP and file_created characteristics were selected. 

During ransomware communication to the compromised system to identify the source and 

destination IP and source and destination ports, it was noted that UDP helps. The 

file_created feature supports identifying files created by ransomware during the infection 

process. 
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With the described background, the machine learning algorithms generated the models 

using three characteristics grouped into one. They used five combinations to input to the 

classification algorithms to achieve detection and prediction of the ransomware and 

goodware artifacts. Table 7 describes the objects taken from the "report.json" file obtained 

from Cuckoo Sandbox and the description and importance of each parameter. 

The file .json consists of 15 objects, and in each item, there are features that, in turn, contain 

other nested data. The objects analyzed are three: proc memory, network, and behavior. 

We extract the characteristics of interest from these files using a developed application that 

allows us to obtain the nested values inside the files according to feature selection criteria. 

This application is introduced in section 4.2 and explained in detail in Annex A and B. 

 The methodological approach applied mainly for phases initial and analysis is explained 

below to describe the dataset generation. 

Table 7. Description of dataset column (features Phase initial and analysis). 

Identifier Description Phase 

ARTIFACT Identifiers associated with ransomware samples, for example, 1 for 7-Zip Initial and 

analysis 

FAMILY Identifiers associated with the type of ransomware or goodware, i.e., locker 

or encryptor. E for encryptor,  L para locker, and G for goodware. 

Initial and 

analysis 

REGWRITE An identifier associated with written log keys. It has got two zeros ahead. 

Example: 00100 

Initial and 

analysis 

REGOPEN An identifier related to open registry keys. It has got three zeros ahead. 

Example: 000100 

Initial and 

analysis 

REGREAD An identifier associated with reading log keys. It has got four zeros ahead. 

Example: 0000100 

Initial and 

analysis 

PROC Identifier associated with tit set formed by pid, process_name, and ppid. It 

has got a zero in front. Example: 0100 

Initial and 

analysis 

PMFILES Identifier associated with generated memory dump files. It takes into 

account PID and file as a set. It has five zeros in front. Example: 00000100 

Initial and 

analysis 

PMURLS Identifier associated with URLs generated in memory. It has got six zeros 

ahead. Example 000000100 

Initial and 

analysis 

NETHOSTS Identifier associated with the host involved. It has got seven zeros ahead. 

Example: 0000000100 

Initial and 

analysis 

NETREQUESTS Identifier associated with domains to which requests are made. It has got 

eight zeros ahead. Example 00000000100 

Initial and 

analysis 

FILECREATED Identifier associated with different files created (tmp, ini, bat, among other 

types) with which it performs the infection and propagation. It has nine 

zeros ahead. Example: 000000000100 

Analysis 
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Identifier Description Phase 

DLLLOADED Identifier associated with dlls loaded by the device. It has ten zeros ahead. 

Example: 0000000000100 

Analysis 

COMMANDLINE Identifier associated with commands that could execute the artifact (Power 

Shell, CMD). It has 11 zeros ahead. Example: 00000000000100 

Analysis 

DOMAIN Identifier associated with domains and IP addresses with which the device 

communicates. It has 12 zeros ahead. Example: 000000000000100 

Analysis 

TCP Identifier associated with the tcp protocol used by the device. It has 13 

zeros ahead. Example: 0000000000000100 

Analysis 

UDP Identifier associated with the udp protocol used by the device. It has 14 

zeros ahead. Example: 00000000000000100 

Analysis 

The features are chosen to obtain the best classification performance. We use feature 

engineering to extract features that provide enough information about the goodware and 

the ransomware. Characteristics with redundant information are not considered, and 

features that appear not to influence the results are not considered.  

For Phase initial, it was considered the "DNS" features of the "network" object that contains 

sub-characteristics. "Request" was considered because it allows viewing domain names 

during a system's infection. In the case of the object "behavior," the characteristics 

"processes" and "summary" also contain sub-characteristics. The feature "Processes" 

includes "pid" (represents the process identifier), "process_name" (represents the process 

name), and "ppid" (represents the parent process identifier). The "summary" feature, 

"regkey_opened" (open registry keys), "regkey_read" (read registry keys) and 

"regkey_written" (written registry keys) were also considered. 

On the other hand, in Phase analysis, it was added the "domain," "tcp," and "udp" features 

of the "network" object, which identify communications in the network.  Additionally, the sub-

characteristics mainly involved in the behavior of ransomware "file_created," "dll_loaded," 

and "command_line" were chosen. 

With these considerations, 380 of the total experiments generated the corresponding json 

files to obtain the final dataset.  The mentioned features emulate the different ransomware 

artifacts’ behavior in an isolated and controlled testing environment, which is useful for 

constructing the dataset.  A set of identifiers for the dataset are described in Table 8.  Each 

identifier can, in turn, identify a characteristic or set of previously selected parameters. It is 

necessary to clarify that the relationship in the dataset between the artifact (ransomware 

sample) and the different parameters was obtained from our analysis. 
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Phase Final – Selected Features 

With the background of phases from previous to analysis, a third phase was developed in 

which several datasets were generated (Phase final). To generate the dataset, 2000 

experiments were performed with 20 ransomware samples and 20 Goodware samples. 

Characteristics were selected if they were affected during the infection process. Other 

characteristics were also selected that affected the infection process. These characteristics 

are reflected in Table 7. The identifiers are assigned depending on the number of times that 

features have been counted, that is, integer values starting with 0 when not there are 

records and from 1 onwards when there are records. 

Table 8. Description of the dataset features for Phase final. 

Identifier Description Phase 

family Identifiers associated with the type of ransomware or goodware, locker or 

encryptor. E for encryptor,  L for locker, and G for goodware. 

Final 

 

proc_pid Identifier associated with the process identifier. Integer values are 

assigned starting at 0 if no record exists 

Final 

file Identifier associated with the file's name created as a memory dump of 

the analyzed artifact. Integer values are assigned starting at 0 if no record 

exists 

Final 

urls Identifier associated with URLs found during the core dump process. 

Integer values are assigned starting at 0 if no record exists 

Final 

type Identifier associated with the artifact type. Integer values are assigned 

starting at 0 if no record exists 

Final 

name Identifier associated with the name of the process in memory. Integer 

values are assigned starting at 0 if no record exists 

Final 

ext_urls Identifier associated with URLs used by the process in memory. Integer 

values are assigned starting at 0 if no record exists 

Final 

path Identifier associated with the storage directory of the memory process. 

Integer values are assigned starting at 0 if no record exists 

Final 

program Identifier associated with the type of program that executes the script. 

Integer values are assigned starting at 0 if no record exists 

Final 

info Identifier associated with the Information of the script that executes a 

program. Integer values are assigned starting at 0 if no record exists 

Final 

families Identifier associated with a list of malware family names. Integer values 

are assigned starting at 0 if no record exists 

Final 

description Identifier associated with the signature description. Integer values are 

assigned starting at 0 if no record exists 

Final 

sign_name Identifier associated with the name of the firm. Integer values are 

assigned starting at 0 if no record exists 

Final 
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Identifier Description Phase 

sign_stacktrace Identifier associated with the execution stack related to an API call. 

Integer values are assigned starting at 0 if no record exists 

Final 

arguments Identifier associated with arguments of the API call. Integer values are 

assigned starting at 0 if no record exists 

Final 

api Identifier associated with the API call. Integer values are assigned 

starting at 0 if no record exists 

Final 

category Identifier associated with the category of the API call. Integer values are 

assigned starting at 0 if no record exists 

Final 

imported_dll_count Identifier associated with the number of system DLLs imported by the 

artifact. Integer values are assigned starting at 0 if no record exists 

Final 

dll Identifier associated with system DLL libraries used by the artifact during 

analysis. Integer values are assigned starting at 0 if no record exists 

Final 

pe_res_name Identifier associated with the artifact name. Integer values are assigned 

starting at 0 if no record exists 

Final 

filetype Identifier associated with the artifact type. Integer values are assigned 

starting at 0 if no record exists 

Final 

pe_sec_name Identifier associated with the name of sections found within the artifact. 

Integer values are assigned starting at 0 if no record exists 

Final 

entropy Identifier associated with the artifact's entropy level. Integer values are 

assigned starting at 0 if no record exists 

Final 

hosts Identifier associated with the IP addresses of the Hosts involved during 

the analysis. Integer values are assigned starting at 0 if no record exists 

Final 

requests Identifier associated with domains to which DNS requests (queries) were 

sent. Integer values are assigned starting at 0 if no record exists 

Final 

mitm Identifier associated with network analysis to verify Man-in-the-middle 

type attacks. Integer values are assigned starting at 0 if no record exists 

Final 

domains Identifier associated with domains with which communication was 

established during the analysis. Integer values are assigned starting at 0 

if no record exists 

Final 

dns_servers Identifier associated with DNS servers used by the artifact during 

analysis. Integer values are assigned starting at 0 if no record exists 

Final 

tcp Identifier associated with tcp connections established during the analysis. 

Integer values are assigned starting at 0 if no record exists 

Final 

udp Identifier associated with udp connections established during the 

analysis. Integer values are assigned starting at 0 if no record exists 

Final 

dead_hosts Identifier associated with hosts down during data transmission. Integer 

values are assigned starting at 0 if no record exists 

Final 

proc Identifier associated with the name of the process in memory. Integer 

values are assigned starting at 0 if no record exists 

Final 

beh_command_line Identifier associated with commands executed during the analysis. 

Integer values are assigned starting at 0 if no record exists 

Final 
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Identifier Description Phase 

process_path Identifier associated with the directory where the process is stored on the 

victim system. Integer values are assigned starting at 0 if no record exists 

Final 

tree_command_line Identifier associated with commands executed during the analysis. 

Integer values are assigned starting at 0 if no record exists 

Final 

children Identifier associated with processes initialized by the artifact. Integer 

values are assigned starting at 0 if no record exists 

Final 

tree_process_name Identifier associated with the name of the child process. Integer values 

are assigned starting at 0 if no record exists 

Final 

command_line Identifier associated with commands executed during the analysis. 

Integer values are assigned starting at 0 if no record exists 

Final 

regkey_read Identifier associated with registry keys read during the scan. Integer 

values are assigned starting at 0 if no record exists 

Final 

directory_enumerated Identifier associated with directories listed by the artifact. Integer values 

are assigned starting at 0 if no record exists 

Final 

regkey_opened Identifier associated with registry keys opened during the scan. Integer 

values are assigned starting at 0 if no record exists 

Final 

file_created Identifier associated with files created by the artifact. Integer values are 

assigned starting at 0 if no record exists 

Final 

wmi_query Identifier associated with Windows Administration instrumentation 

queries. Integer values are assigned starting at 0 if no record exists 

Final 

dll_loaded Identifier associated with DLL libraries used by the artifact. Integer values 

are assigned starting at 0 if no record exists 

Final 

regkey_written Identifier associated with registry keys written by the artifact. Integer 

values are assigned starting at 0 if no record exists 

Final 

file_read Identifier associated with files read during the scan. Integer values are 

assigned starting at 0 if no record exists 

Final 

apistats Identifier associated with the accounting of each API call made during the 

analysis. Integer values are assigned starting at 0 if no record exists 

Final 

errors Identifier associated with errors logged during analysis. Integer values are 

assigned starting at 0 if no record exists 

Final 

action Identifier associated with actions recorded during the analysis. Integer 

values are assigned starting at 0 if no record exists 

Final 

log Identifier associated with various information about the performed 

analysis. Integer values are assigned starting at 0 if no record exists 

Final 

A tool created to select the characteristics described in the previous table was used in 

making the datasets, as seen in section 4.2. When choosing the features, a total of 12 were 

created. Table 9 shows the number of characteristics of each dataset and some 

observations regarding each one. 
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Table 9. Datasets description 

Dataset Features Observation 

DATASET 1  

6 features 

udp, domains, file_created, 

dll_loaded, command_line, 

regkey_read 

The reason for selecting this dataset's characteristics is that 

with them, the best results were obtained in the models in 

phases initial and analysis. 

DATASET 2 

7 features 

udp, domains, file_created, 

dll_loaded, command_line, 

regkey_read, api 

The api feature is added due to its density within the 

report.json files 

DATASET 3 

8 features 

udp, domains, file_created, 

dll_loaded, command_line, 

regkey_read, api, URLs, proc 

The pid, process_name, and ppid (proc) features are added to 

understand the behavior of the processes running during the 

ransomware infection. With these characteristics, the id of the 

processes and their name are identified. Identifier associated 

with URLs found during the core dump process. Integer values 

are assigned starting at 0 if no record exists 

DATASET 4 

11 features 

udp, domains, file_created, 

dll_loaded, command_line, 

regkey_read, api, urls, proc, tcp, 

hosts, request 

Se agregan las características tcp, hosts y request con el 

propósito de identificar puertos de comunicación por tcp, hosts 

involucrados y respuestas dadas durante la comunicación en 

la red 

DATASET 5 

12 features 

udp, domains, file_created, 

dll_loaded, command_line, 

regkey_read, api, URLs, proc, 

tcp, hosts, request, children 

The children feature is added to see the processes within the 

process tree 

DATASET 6 

13 features 

udp, domains, file_created, 

dll_loaded, command_line, 

regkey_read, api, URLs, proc, 

tcp, hosts, request, children, 

entropy 

The entropy feature was added due to its contribution to 

entropy 

DATASET 7 

14 features 

udp, tcp, hosts, domains, 

request, proc, file_created, 

dll_loaded, regkey_opened, 

command_line, regkey_read, 

regkey_written 

The 14 features were chosen from Phase analysis– Initial 

Dataset Experimentation with Rapid Minder 

DATASET 8 

15 features 

URLs, udp, tcp, hosts, domains, 

request, api, dll, entropy, proc, 

children, file_created, 

dll_loaded, command_line, 

regkey_read 

The URLs and dll features were added due to their density 

within the json file and also because, in previous analyzes of 

the models, they contributed considerably 

DATASET 9 

16 features 

file, URLs, udp, tcp, hosts, 

domains, request, api, dll, 

entropy, proc, children, 

file_created, dll_loaded, 

command_line, regkey_read 

Added file feature due to a previous analysis of models 

DATASET 10 

17 features 

file, URLs, udp, tcp, hosts, 

domains, request, api, dll, 

entropy, proc, children, 

file_created, dll_loaded, 

command_line, 

regkey_read,regkey_written 

Added regkey_written feature due to its density within the json 

file and also because previous analyzes on models added 

significantly 

DATASET 11 

25 features 

file, URLs, name, program, 

positives, udp, tcp, hosts, 

domains, request, sign_name, 

api, dll, filetype, entropy, errors, 

apistats, proc, file_created, 

dll_loaded, command_line, 

regkey_read,regkey_written 

Added name program positives sign_name filetype errors 

apistats file_read features to complement features of each 

main object 



 

54 

 

Dataset Features Observation 

DATASET 12 

50 features 

All characteristics All the characteristics were selected to know how they affect 

the performance of the models. SeeTable 7. 

 

4.5. Test Setting 

It was considered a test scenario in an isolated environment, allowing essential information 

to obtain. Then, our feature extraction tool filtered the attributes required for the dataset 

conformation. The deployment was based on a safe environment using the cuckoo sandbox 

tool [109] in the Cybersecurity Laboratory (Advanced Data Analytics). 

Phases Previous, Initial and Analysis 

The network topology used to generate the dataset in Phases Previous, Initial and Analysis 

is presented in Figure 11. This experimentation was carried out on 2 victim machines and 

14 features were obtained for an initial analysis of ransomware behavior. 

 
Author: Juan A. Herrera Silva 

Figure 11. Test environment network topology for Phases Previous to Analysis 
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For phases initial and analysis, the following ransomware samples were considered: 

CryptoLocker, CryptoWall, and PetrWrap. Petya, WannaCry, Cerber, Locky, Radamant, 

Satana, and TeslaCrypt13. The goodware samples were: Windows 7, Winzip, Acrobat 

Reader, Chrome, Explorer, DllHost, Firefox, Services, and Svchost14.  

As part of the experiments, the report data was obtained based on Cuckoo logs (*.json, 

*.pcap, among others).  This data generates csv files to proceed with the analysis. A total 

of 380 experiments are carried out, considering 20 analyses for each device. Ten scans 

were run for the victim using machine 1 with Windows XP, and similarly for the victim 

consuming the machine with Windows 7 (ten scans). Experiments on this work were 

conducted on the FIS-EPN Cybersecurity network, protected by a firewall and access 

control and service control rules. After the attack runs, the report.html and report.json files 

are obtained. The report.html contains summary information, and the file report.json 

considered the following objects: proc memory, network, and behavior. As seen in Table 9, 

we chose additional features to analyze each selected object. 

In summary, for Phase initial and Phase experimental, the artifacts are presented in Table 

10. There are 24 artifacts in total, as the ransomware applies the same artifact on Windows 

XP and Windows 7.  The phases are due to an evolution of the systematic work that has 

been done. Parts of the dataset have been generated and tested in classifiers to evaluate 

their performance. This process has been performed in several stages to obtain the most 

relevant features for ransomware detection. 

Table 10. Artifacts for Datasets in Phases Initial and Analysis 

ID Name SHA1 MD5 Family Experiments 

1 7-zipPortable_9.20_ 

Rev_2.paf.exe 

35bcca0e8b907386ca4c7

536dc55913e3c71b220 

7fa4441c55a838e0

691328cebde21802 

G 20 

2 AdbeRdr11008_es_ 

ES.exe 

aa08e431163c6129697d0

aae7f4f9915bc90b2ba 

3472d1522f956853

4a9116400af1a1be 

G 10 

3 AcroRdrDC19012200

36_es_ES.exe 

ad998431b1ec06b2ea208

7e3a2ebc65a6d23ba9e 

153311a588cbbc6f4

5ea4401bf081fec 

G 10 

4 cerber.exe c69a0f6c6f809c01db92ca

658fcf1b643391a2b7 

8b6bc16fd137c09a0

8b02bbe1bb7d670 

E 20 

                                                

13 https://github.com/ytisf/theZoo/tree/master/malwares/Binaries    
14 https://www.exefiles.com/en/ 

https://github.com/ytisf/theZoo/tree/master/malwares/Binaries
https://www.exefiles.com/en/
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ID Name SHA1 MD5 Family Experiments 

5 chrome.exe 04ca28f529aae1db4be4cf

b4c601f57c7d08f997 

da2965d0020f4156

141c783ebcd64f0f 

G 20 

6 cryptolocker.exe 65559245709fe98052eb28

4577f1fd61c01ad20d 

04fb36199787f2e3e

2135611a38321eb 

E 10 

7 cryptowall.bin ca963033b9a285b8cd004

4df38146a932c838071 

47363b94cee907e2

b8926c1be61150c7 

E 10 

8 dllhost.exe ab0af67fd000646ed231ee

421e5c71798d0d86a0 

0f886de058726bb6

323bfd98773fad26 

G 10 

9 dllhost.exe ace762c51db1908c858c8

98d7e0f9b36f788d2d9 

a63dc5c2ea944e66

57203e0c8edeaf61 

G 10 

10  explorer.exe 78f905f135771dec9646f6f

753195adf5e7bf7c9 

7522f548a84abad8f

a516de5ab3931ef 

G 20 

11  explorer.exe 84123a3decdaa217e3588

a1de59fe6cee1998004 

38ae1b3c38faef56f

e4907922f0385ba 

G 20 

12 firefox.exe efe760ee6f516adb01e309

2e78bda904df908b56 

9adcb5abe8bb7e1a

9355632817d23f43 

G 20 

13 locky b606aaa402bfe4a15ef801

65e964d384f25564e4 

b06d9dd17c69ed2a

e75d9e40b2631b42 

E 20 

14 Petrwrap.exe 34f917aaba5684fbe56d3c

57d48ef2a1aa7cf06d 

71b6a493388e7d0b

40c83ce903bc6b04 

L 20 

15 petya.bin d1c62ac62e68875085b62f

a651fb17d4d7313887 

a92f13f3a1b3b3983

3d3cc336301b713 

L 20 

16 radamant.ViR 05ae9c76f8f85ad2247c06

d26a88bbbcfff4d62e 

6152709e741c4d5a

5d793d35817b4c3d 

E 20 

17 satana.bin 5b063298bbd1670b4d39e

1baef67f854b8dcba9d 

46bfd4f1d581d7c01

21d2b19a005d3df 

L 20 

18 services.exe 7cf0d257861a23191a9d48

2a51783593d6a64f74 

d658a8c2fc7b2ad53

d1259741a09ee04 

G 10 

19 services.exe ff658a36899e43fec3966d6

08b4aa4472de7a378 

71c85477df9347fe8

e7bc55768473fca 

G 10 

20 svchost.exe 1aae36311da414c8fd5b32

956aaed1d82237ab08 

4f2340f0bd5b6365c

38e74dd391919a8 

G 10 

21 svchost.exe 4af001b3c3816b860660cf

2de2c0fd3c1dfb4878 

54a47f6b5e09a77e

61649109c6a08866 

G 10 

22 teslacrypt 51b4ef5dc9d26b7a26e214

cee90598631e2eaa67 

6e080aa085293bb9

fbdcc9015337d309 

E 20 
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ID Name SHA1 MD5 Family Experiments 

23 wannacry.exe 5ff465afaabcbf0150d1a3a

b2c2e74f3a4426467 

84c82835a5d21bbcf

75a61706d8ab549 

E 20 

24 WinRAR.EXE 0d95c17831e9cd4d0d7efb

9efa866437eed186fd 

b78d7b5d2fcbe117

1a3500cc2176f9c9 

G 20 

    TOTAL 380 

 
 

Figure 12 shows the characteristics (highlighted in yellow) to generate the Phase initial; 

dataset and additional features (enclosed in red ellipses) to produce the Phase analysis 

dataset. It shows a subset of the data obtained from the reports and includes a list and 

quantification of the characteristics analyzed. Table 11 lists the selected characteristics for 

Phases initial (1) and analysis (2), with an observation explaining the selection criterion. 

 

 
Author: Juan A. Herrera Silva 

Figure 12. Features analyzed for the dataset using Cuckoo Sandbox in Phases Previous, Initial and 

Analysis 
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Table 11. Selected characteristics Phases Initial and Analysis 

Object Feature Criterion 

Behavior regkey_opened This feature was taken because of the changes they make in the OS. 

Phase initial. 

Behavior regkey_read This feature was taken because of the changes they make in the OS. 

Phase initial. 

Behavior regkey_written This feature was taken because of the changes they make in the OS. 

Phase initial. 

Behavior processes This feature was taken because of the processes running on the OS. 

Phase initial. 

Procmemory files This feature was taken because of files created by memory processes. 

Phase initial. 

Procmemory URLs This feature was taken due to URLs created by memory processes. Phase 

initial. 

Network hosts This feature was taken due to the communication of hosts involved. Phase 

initial. 

Network request This feature was taken due to communication to domain servers 

(requests). Phase initial. 

Behavior file_created This feature was taken because of the files that are created by the artifact 

in the OS. Phase Analysis. 

Behavior dll_loaded This feature was taken because of the dlls that load the artifact during its 

execution. Phase Analysis. 

Behavior command_line This feature was taken because of the commands the artifact uses. Phase 

Analysis. 

Network domains This feature was taken because of the domains involved in communication. 

Phase Analysis. 

Network tcp This feature was taken due to network analysis of the tcp protocol. Phase 

Analysis. 

Network udp This feature was taken due to network analysis of the udp protocol. Phase 

Analysis. 

This study determined a set of candidate characteristics to elaborate the required dataset 

from the original information obtained and carried out (without processing) data filtering. 

The features taken into account come from different objects: procmemory, behavior, and 

network. In turn, these objects contain a set of characteristics and nests of the same so-

called sub-characteristics. 

 The object "procmemory" is characterized by creating logs about modifications in the 

memory of infected devices and considering features such as memory dump files, URLs, 

processes executed in memory, and memory regions affected among the most relevant. 

This object's analysis sets the maximum and minimum number of memory dump files (dmp 

files) with their process identifiers and the five artifacts used in the experiments.  
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We determined with this data that the ransomware that most generates dump files is 

WannaCry. Simultaneously, it was observed that large quantities of URLs were also stored 

with the same ransomware.  The object called “network” characterizes ransomware’s 

behavior concerning communication in the network (requests and protocols involved, 

servers, domain names, and hosts that interact in communication). Because of this object's 

analysis, the maximum and minimum number of IPs, domain names, and requests have 

been made to set them. The attributes considered are hosts (IPs of hosts involved) and 

claims (domain names of requests).  

The "behavior" object characterizes ransomware behavior (triggered processes, library 

calls, and invoked registry keys, among others). As a result of this object’s analysis, it was 

set a maximum and a minimum number of affected records and processes executed by the 

five types of ransomware samples. The attributes considered are open, read, and written 

processes and registers.  

The research gets the most representative average ransomware occurrence with the 

selected features with ransomware and goodware artifacts as shown in Annex D.  You can 

see Figure 13 for the representation of average characteristics for ransomware as obtained 

in the experiments for Phase analysis that produce this data. 
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Author: Juan A. Herrera Silva 

Figure 13. Average characteristics 

WannaCry ransomware affects victim systems in processes that involve registry keys. The 

lists of the chosen features allow forming the dataset from identifiers of each list. The 

dataset associates artifacts with processes, registry keys, memory dump files, URLs stored 

in memory, and IPs of hosts involved in communication during ransomware attacks and 

domain names.  The details of each parameter (Phase initial y Phase analysis) and all 

Annexes are publicly available at the following link: 

https://drive.google.com/open?id=1vgOi2jchr_a0HrRhK1KOa6_UjuaczMaf. 

 

  

https://drive.google.com/open?id=1vgOi2jchr_a0HrRhK1KOa6_UjuaczMaf
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Phase Final  

Table 12 lists the 40 artifacts used in Phase Final: goodware, encryptor, and locker. In this 

table are also some observations about the behavior of goodware that could lead to an 

erroneous detection as malware because they have behaviors similar to Ransomware.   The 

selected Ransomware is highlighted in yellow in Fig. 3. Ransomware evolution timeline. 

Table 12. Artifacts used in Phase final 

ID Artifact Family Comments 

1 7Zip Goodware This goodware was selected due to its behavior related to 

file encryption. 

2 Task Manager (taskmgr) Goodware This goodware was selected due to its access to process 

and system tasks. 

3 API WINDOWS 

SECURITY 

CRYPTOGRAPHY (cipher) 

Goodware This goodware was selected due to its operating system 

file encryption behavior. 

4 API WINDOWS SYSTEM 

INFORMATION 

REGISTRY (regedit) 

Goodware This goodware was selected due to its interactions with the 

registry keys. 

5 API WINDOWS VOLUME 

MANAGEMENT (diskpart) 

Goodware This goodware was selected due to its access to disk 

volumes and partitions. 

6 Bitlocker Goodware This goodware was selected due to its ability to encrypt 

disks and directories. 

7 BitPaymer Encryptor BitPaymer allows cybercriminals to carry out a ransomware 

and data theft attack at the same time as it has a feature to 

remotely access the victim's files before encrypting them. 

8 Cerber Encryptor This encryption ransomware was selected due to it 

encrypts only specific files from the infected device. Leaves 

additional ransom notes, such as an audio file that is 

addressed aloud to the victim, both on the desktop of the 

affected computer and inside encrypted folders. 

9 cmd Goodware This goodware was selected due to its ability to execute 

scripts and commands. 

10 Cryptolocker Encryptor This encryption ransomware was selected due to it 

encrypts only specific files from the infected device. 

11 Cryptowall Encryptor This Ransomware (system blocker) was selected due to it 

infiltrates the user's operating system through an infected 

email message or a fraudulent download. 

12 Crysis Encryptor Crysis ransomware uses brute force to infect computers. 

13 dllhost Goodware This goodware was selected due to its access to dlls during 

different stages of the software use (execution, installation). 
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ID Artifact Family Comments 

14 Eris Encryptor ERIS renames all encrypted files and changes their 

extensions to ".ERIS" and uses both Salsa20 and RSA-

1024 encryption. 

15 Windows Remote Desk Goodware This goodware was selected due to its control interaction 

when there are permissions. 

16 GandCrab Encryptor GandCrab is a virus for rent for other cybercriminals to 

spread attacks with it. 

17 gpg Goodware This goodware was selected due to the execution of public 

and private keys. 

18 IPScan Goodware This goodware was selected because it allows scanning IP 

addresses in several environments. 

19 Locky Encryptor This ransomware was selected because it is distributed via 

email or exploit kit with Microsoft Word attachment. 

20 Maze Encryptor This ransomware threatens to leak information from 

encrypted files, if the demanded ransom is not paid. It is 

designed to attack Windows operating systems. 

21 Microsoft SQL Server 

Compact 

Goodware This goodware was selected due to its use for database 

management. 

22 Nmap Goodware This goodware was selected because it allows different 

scanning parameters such as open ports and IP 

addresses, among others. 

23 Petrwrap Locker PetrWrap, a variant of Petya that takes into account 

WannaCry's Eternal Blue exploit 

24 Petya Locker This ransomware was selected because overwrites the 

main boot record of the infected computer 

25 Phobos Encryptor This ransomware encrypts data to demand payment for 

decryption. During the encryption process, files are 

renamed according to this pattern: original file name, 

unique ID assigned to victims, cybercriminals' email 

address, and the extension ".iso" (not to be confused with 

the format genuine ISO disc image) 

26 Radamant Encryptor The ransomware encrypts data using AES-256 encryption 

and the file extensions ".RDM" or ".RRK" are appended to 

infected files. It spreads via spam email attachments, 

corrupted links, fake advertisements and so on.  (RaaS) 

27 RansomX Encryptor This ransomware is used in targeted attacks against 

government agencies and companies. 

28 Ryuk Locker This ransomware encrypts the data on an infected system, 

making the data on it inaccessible until a ransom is paid in 

Bitcoin. It expressly seeks high-profile targets capable of 

paying large sums, such as large public entities. 
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ID Artifact Family Comments 

29 Satana Locker This ransomware encrypts files and prevents from starting 

Windows (injects the same into TaskHost.exe) and starts 

data encryption. (RaaS) 

30 services Goodware This goodware was selected due to its interaction with 

operating system services.  

31 Sodinokibi Encryptor Sodinokibi ransomware exploits a vulnerability in Oracle 

WebLogic to gain access to the target machine. Once 

inside, the malware attempts to deploy itself with elevated 

legal user rights to access all files as well as system 

resources without restrictions. 

32 STOP Encryptor This ransomware uses a combination of AES and RSA 

algorithms to encrypt data and adds the .STOP file 

extension. 

33 svchost Goodware This goodware was selected because it checks the 

operating system and is possibly the first victim of malware 

attacks.  

34 Team Viewer Goodware This goodware was selected due to its interaction with 

remote control.  

35 Teslacrypt Encryptor This ransomware is appeared as a threat targeted users to 

computer games, now has several versions, and affects 

many files 

36 VNC Goodware This goodware was selected due to its interaction with 

remote control.  

37 WannaCry Encryptor WannaCry takes advantage of the vulnerability of the SMB 

device sharing protocol 

38 WhatsAppWeb Goodware This goodware was selected due to the use of encryption in 

sending and receiving messages.  

39 Winrar Goodware This goodware was selected due to the use of file and 

directories encryption.  

40 Wireshark Goodware This goodware was selected because it allows the 

obtention of important information through a network using 

pcap files.  

In Phase final, 50 features were used, as shown in Figure 14, which shows the GUI of the 

extraction tool generated in the present work. These characteristics are generated from the 

.json file produced in the cuckoo sandbox using the application described in section 4.2 and 

Annexes A and B.  Phase final included Windows 10 as the platform and new threats and 

goodware, as shown in Table 12. 
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Author: Juan A. Herrera Silva 

Figure 14. Features for Phase final that are automatically generated. 

Figure 15 shows the Phase final test environment network topology. In this configuration, 

we have three machines; the first hosts cuckoo, the second CPU processes the models 

with machine learning, and the third machine is responsible for storing logs (big data) and 

artifacts for testing. Cuckoo communicates with an isolated virtual network for ransomware 

processing and analysis composed of CPUs in five platforms (victims): Windows XP Service 

Pack3, Windows 7 Ultimate, Windows 7 Professional, Windows 10 Enterprise and Windows 

10 Professional.   In this experimentation, the main 50 features selected for the generation 

of the 12 Datasets were obtained and consequently the different learning models were 

obtained. 
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Author: Juan A. Herrera Silva 

Figure 15. Final Test environment network topology used in Phase Final 

4.6. Balanced Dataset 

The first dataset obtained consisted only of malware generated within the cuckoo sandbox. 

For balancing data, goodware records were included to avoid bias for having an unbalanced 

dataset with more malware than goodware records that could affect the classification when 

using this data within machine learning algorithms.  

The column named Objects represents the JSON file's main features created by the Cuckoo 

Sandbox tool after analyzing artifacts (Ransomware or Goodware).  The total number of 

main objects is 15, each with nested features. The total number of features in the JSON file 

is 326. Of these 326 characteristics, some have been chosen in Phases previous, initial and 

analysis under the criteria explained in Table 11. In Phase final, 50 features are selected 

(Figure 13) after several experiments with machine learning algorithms applied to diverse 

combinations of attributes. This process is detailed in Annexes D and E, where the different 

generated models are listed with their performance when using various combinations of 

features for supervised machine learning (Annex E) and Neural Networks (Annex F), both 

include detection times.   
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4.7. Machine Learning Algorithms 

In this study, we tested machine learning algorithms for the generation of the models to 

recognize ransomware, as shown in Table 13.  For the generation of the machine learning 

models, first, we used the RapidMiner tool15 and obtained models for the mentioned 

algorithms as an approximation for evaluating performances. In Phase final, we took the 

algorithms with the best performances and applied the Scikit-learn library and the Python 

programming language with different parameters until the best results were obtained.  

Table 13. Machine learning algorithms 

ALGORITHM / 

TECHNICAL 
REFERENCES CHARACTERISTICS 

Decision Tree [110], [111] 

1. It is a classifier in the form of a tree structure that includes branch nodes 

and leaf nodes 

2. The decision tree is a supervised machine learning (ML) algorithm 

commonly used in regression analysis and classification. 

Neural networks [112] 

Neural networks work similarly to a biological brain to recognize patterns of 
large amounts of data. Multi-layer neural network algorithms received raw 
data and performed internal processes to extract and select features. For 
this reason, they had an embedded feature extraction and selection 
process.  

A simple neural network includes an input layer, an output layer with the 
classified variables, and a hidden layer. The layers are connected and 
form a network of neurons. 

Fast Large Margin [113] 

1. Quick learning method for high margin optimizations 

2. It is based on the linear support vector learning scheme3. You can work 

on a dataset with millions of examples and attributes 

Generalized 

Linear Model 
[114] 

1. GLMs are a class of models applied in cases where linear regression is 

not applicable or does not make appropriate predictions.  

2. It consists of three components:  

2.1. Random component: an exponential family of probability 

distributions;  

2.2. Systematic component: a linear predictor; and  

2.3. Link function: which generalizes the linear regression. 

Gradient Boosted 

Trees 
[115], [116], [117] 

This algorithm is based on an ensemble of decision trees to improve the 
performance of each separate tree, considered individually as weak 
learners. The algorithm applies gradient augmentation algorithms and 
generates trees sequentially in a way that complements the errors of the 
previous tree, and this model is not random.  

Instead, it uses powerful pre-pruning. The trees combined their output 
results in better models. In the case of regression, the final result is 
generated from the average of all weak learners. 

                                                

15 https://rapidminer.com/downloads/ 
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ALGORITHM / 

TECHNICAL 
REFERENCES CHARACTERISTICS 

Logistic 

Regression 
[118], [119] 

1. the nominal attributes are transformed into numerical attributes 

2. This algorithm is optimized for conditional probability. 

Naive Bayes [119], [120] 

This algorithm generates probabilistic models on target variables. It 
assumes that input features are independent without pairwise correlation, 
which is not entirely accurate in most cases. This assumption of 
uncorrelated attributes makes this algorithm “naive”.  

The name Bayes comes from the famous probabilistic theorem on which 
this algorithm bases the generation of the probabilistic model. 

Random Forest 
[118], [119] , 

[121], [122], [123] 

This algorithm is an ensembled method combining tree predictors so that 
each tree depends on the values of an independently sampled random 
vector and has the same distribution for all trees in the forest. 

It can improve performance compared to independent decision trees. 

The random forest algorithm uses a collection of decision trees to vote and 

predict the input data class. 

Support Vector 

Machines 
[122], [124] 

1. It is a machine learning mechanism based on the concept of structural 

risk minimization of the Statistical Learning Theory  

2. Separate data points as much as possible 

3. It is based on the concept of decision planes that define decision limits 

Model Generation with Machine Learning Algorithms 

Phases previous through analysis used RapidMiner to generate the machine learning 

models. In Phase final, we used the Scikit-Learn library and Python programming language 

to define each algorithm's parameters flexibly.  Two particular variables are “estimators” 

and “versions.” The estimator’s variable contains an array of integers listing the number of 

trees to consider in each algorithm. This way, a Random Forest model and, a GBRT model 

with five trees, another model with ten trees will be trained.  

The “versions” variable allows assigning an identifier to each pair of models. The value '1' 

will correspond to the first two models generated by the script, and the value '2' to the next 

two. Then, the part that will be used for training and the part that will be used for evaluation 

is obtained from the dataset. The “test_size” parameter denotes the percentage of the 

dataset that will be taken for assessment. Also, the dataset for cross-evaluation is divided 

into ten folds, with 10% of the dataset for testing and 90% for training, a process repeated 

ten times to obtain performance scores that can be averaged. Using the results of the 

precedent phases, we used the following machine learning algorithms: Random forest, 

Gradient boosted regression trees, Gaussian Naïve Bayes, and Neural Networks. 
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Machine Learning Parameters for Phase Final 

The class and parameters described below are used to generate each model for Phase 

final since, in the other phases, we used a free version of RapidMiner that was useful as a 

first approximation to the problem. However, with this tool, we did not specify personalized 

parameters as in Python. In Phase final, we used the algorithms that yielded better 

performances in the other phases and programmed them in Python. We implemented 

Random Forest, Gradient Boosted Regression Trees, Neural Networks, and for 

comparison, kept an algorithm with not that good performance for our problem: Gaussian 

Naïve Bayes.  

Once the models are developed, cross-validation is carried out with a total of 10 splits to 

validate each model effectively. Once this validation is done, we obtain the metrics of 

Precision, Recall, F1, and the confusion matrix to validate the results of each model. 

Random Forest Parameters 

For the generation of this model, the Python sklearn library was used. The 

RandomForestClassifier class allows us to create models of the type Random Forest.  The 

following parameters were used to generate machine learning models with the Random 

Forest algorithm: 

 Estimators (5-100): The number of estimators varies from 5 to 100. A maximum of 

one hundred has been defined to avoid overfitting. 

 Criterion (gini): This function was used to measure the efficiency of each tree 

division since it measures each node's impurity. 

 Maximum Depth (none): A maximum depth was not defined due to the nature of the 

data set and the available number of records used for model generation. 

 The minimum number of records for node division (2): The default property of the 

library was used since each record contains the necessary information to identify 

each artifact. 

 A minimum number of records in leaf nodes (1): This number is the minimum given 

that it is enough for a record to be labeled as software of a particular type to have 

the certainty of the prediction. 

 A maximum number of features (auto): A maximum number of features to be 

considered was not defined since they were manually selected for each dataset. 
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 A maximum number of leaf nodes (none): A maximum number of leaf nodes is not 

defined due to the nature of the dataset. 

 Number of jobs (none): A maximum of 1 job was used for a model generation 

because there was no large dataset to consider parallel processing. 

 Random state (6): This state allows for consistency between all the models 

generated with all the datasets. 

 A maximum number of records (None): Limiting the number of records for a model 

generation was not desired. 

Gradient Boosted Regression Trees Parameters 

Like Random Forest models, sklearn allows us to generate GBRT models with the 

GradientBoostingClassifier class. 

 Estimators (5-100): The number of estimators varies from 5 to 100. A maximum of 

one hundred has been defined to avoid overfitting. 

 Learning Rate (0.1): It was decided to use the default value recommended by the 

library since it presents favorable results. 

 Subsample (1.0): Indicates the number of records each tree will use, so it was 

decided to use all the records. 

 Criterion (Friedman Mean Squared Error): It was decided to use the mse as the 

quality criterion for each division within each tree since it is an improved version of 

the standard Mean Squared Error criterion. 

 A minimum number of records for node division (2): The default property of the 

library was used since each record contains the necessary information to identify 

each artifact. 

 A minimum number of records in leaf nodes (1): This number is the minimum given 

that it is enough for a record to be labeled as software of a specific type to have the 

certainty of the prediction. 

 Maximum Depth (none): A maximum depth was not defined due to the nature of the 

data set and the available number of records used for model generation. 

 Random state (6): This state allows for consistency between all the models 

generated with all the datasets. 

 A maximum number of features (auto): A maximum number of features to be 

considered was not defined since they were manually selected for each dataset. 
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 A maximum number of leaf nodes (none): A maximum number of leaf nodes is not 

defined due to the nature of the dataset. 

 Tolerance (0.004): This tolerance measures the loss calculated between each 

estimator. This value was used because it is the one recommended by the library. 

Gaussian Naive Bayes Parameters  

Like the previously mentioned models, sklearn allows us to generate GBRT models with the 

GaussianNB class. Gaussian Naïve Bayes is a probabilistic classification model, as shown 

in (7), which assumes that the features are independent. Even when this assumption is 

invalid, the model works reasonably well in most cases.  

𝑃(𝑐|𝑥) =
P(x|c)∗𝑃(𝑐)

P(x)
 (1) 

Where: 

 P(c|x) = Posterior probability 

P(x|c) = Likelihood 

P(c) = Class prior probability 

P(x) = Predictor prior probability 

In Phase final, we applied the default parameters to give flexibility to the algorithm because 

if the prior probabilities of the classes are specified, the priors are not adjusted according to 

the data.  

Neural Networks Parameters 

We used the Python programming language and the Tensorflow and Keras library for 

Neural Networks to create artificial neural networks.  The number of splits to be considered 

for the cross-validation process is defined. The following variable defines the dataset to train 

and save the models. The third variable is an array containing the metrics to consider when 

evaluating the generated models and the optimizer used. In this case, the “Adam” optimizer 

is used with a learning rate of 0.001 to get a good model precision and simultaneously 

obtain a solution quickly. 
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Then there is another series of variables also used for the training and evaluating variables 

where the architectures to be built are defined. The program will perform a permutation of 

the activation functions, the number of neurons, and the number of layers of each model to 

be generated. 

There is also a function to encode the classes of the dataset. This output layer is necessary 

for the artificial neural networks to predict the three categories we have in our research: 

encryptor ransomware, locker ransomware, and goodware. Next, the models to be 

generated are built, trained, and validated. A cross-validation process is executed, and each 

trained model is saved.  The parameters to use are: 

 Activation functions: Commonly used functions were used to generate DL models 

and that were available in the library of tensorflow. These are sigmoid, selu, relu and 

tanh. 

 Number of neurons: The number of neurons range from 25 to 300. Each layer of 

each network will always have the same number of neurons defined for the model. 

No permutations between quantities of neurons per layer to facilitate the process of 

generating the Models. The maximum number of neurons is 300 to avoid overfitting. 

 Number of layers: The models range from 1 layer to 4 layers. Increasing the number 

of layers was also avoided due to the nature of the dataset. 

 Learning Rate: A learning rate of 0.001 was used since it is the recommended by 

several authors and, after experimentation, it was enough to obtain models with 

good results. 

 Epochs: Limited to a maximum of 20 epochs for all given models that the loss 

between epochs during training did not vary from drastic way. 

 Metrics: As with ML models, for DL models extracted Precision, Accuracy and 

Recall. For the accuracy of the stage of training, the accuracy obtained in the last 

epoch of each is taken into account model. 

 Output function: softmax was used since it is recommended by various authors for 

general problems. 

Performance of the Classifiers  

Our study evaluated the machine learning algorithms' performance using several metrics 

listed below and a classifier's confusion matrix to calculate these metrics. 
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True positive rate (TPR) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (2) 

 

False positive rate (FPR) =
𝐹𝑃

𝐹𝑃+𝑇𝑁
    (3) 

 

                            Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (4) 

 

                             Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (5) 

 

   F − measure =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (6) 

 

       Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐸𝑃+𝐹𝑁
        (7) 

Equations two to seven show the following descriptions: TP is a true positive representing 

the number of ransomware samples classified correctly. TN is a true negative, meaning the 

number of standard samples categorized accurately. FP is a false positive that represents 

regular binaries incorrectly classified as ransomware. FN is a false negative that represents 

ransomware incorrectly classified. TPR gives the predicted ransomware value correctly 

classified as ransomware, while FPR gives the value of files incorrectly classified as 

ransomware.  

Precision defines the machine learning model's precision in categorizing relevant instances. 

Recall establishes the ability to find pertinent instances of the data set. F-measure is the 

harmonic mean of accuracy and recovery and estimates the given machine learning 

model’s performance.  The equations (two to seven) compute the performance of the 

algorithms using five features. The same is done for the other combinations of 

characteristics.  
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5. DATASET, MODELING, AND DEPLOYMENT 

The dataset and its final features were applied to machine learning algorithms to detect 

locker ransomware and encryptor ransomware to differentiate them from goodware. The 

combination of characteristics used was the one that yielded the best algorithm 

performances. This way, we detect this computer threat to minimize the damage that it can 

cause. The work’s hypothesis was confirmed, and the objectives of this investigation were 

achieved.  

In this chapter, we will describe results obtained in the different phases to explain the 

evolution of the research to get the Ransomware Features Dataset, the resulting datasets, 

machine learning models generated with the final version of the dataset, and the 

deployment using the best models.  

5.1. Evolution of the Research to Obtain the Ransomware Features Dataset 

It was mentioned that the present work had four phases (previous, initial, analysis and final). 

In each stage, a dataset was generated using some of the features of the .json file obtained 

after processing artifacts in the cuckoo file and adding goodware files. Each of the resulting 

datasets was evaluated using machine learning algorithms. Table 14 summarizes the 

features, artifacts, platforms, and the number of generated registers of the CSV dataset 

generated in each phase.   

Table 14. Relevant attributes of the datasets generated in each phase using specific artifacts and 

platforms 

Phase Selected features Artifacts Platforms Number of 

registers of 

the CSV 

dataset file  

Previous regwrite, regopen,  

regread, proc,  

pmfiles, pmurls,  

nethosts, netrequest. 

Cryptolocker, 

Cryptowall,  Petrwrap,  Petya

,  Wannacry 

Windows XP,  

Windows 7 

6.783 

Initial regwrite, regopen,  

regread, proc,  

pmfiles, pmurls,  

nethosts, netrequest. 

7-zipPortable_9.20_ 

Rev_2.paf.exe, 

AdbeRdr11008_es_ES.exe, 

AcroRdrDC1901220036_es_

ES.exe, cerber.exe,  

chrome.exe,  

cryptolocker.exe, 

cryptowall.bin, 

Windows XP,  

Windows 7 

47.959 
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Phase Selected features Artifacts Platforms Number of 

registers of 

the CSV 

dataset file  

dllhost.exe (W7), 

dllhost.exe (WXP), 

explorer.exe (W7), 

explorer.exe (WXP), 

firefox.exe, locky, 

Petrwrap.exe, petya.bin, 

radamant.ViR, satana.bin, 

services.exe (W7), 

services.exe (WXP), 

svchost.exe (W7), 

svchost.exe (WXP), 

teslacrypt, wannacry.exe, 

WinRAR.EXE. 

Analysis regwrite, regopen,  

regread, proc,  

pmfiles, pmurls,  

nethosts, netrequest, 

file_created, dll_loaded, 

command_line, udp, tcp, 

domains 

 

7-zipPortable_9.20_ 

Rev_2.paf.exe, 

AdbeRdr11008_es_ES.exe, 

AcroRdrDC1901220036_es_

ES.exe, cerber.exe,  

chrome.exe, 

cryptolocker.exe, 

cryptowall.bin, 

dllhost.exe (W7), 

dllhost.exe (WXP), 

explorer.exe (W7), 

explorer.exe (WXP), 

firefox.exe, locky, 

Petrwrap.exe, petya.bin, 

radamant.ViR, satana.bin, 

services.exe (W7), 

services.exe (WXP), 

svchost.exe (W7), 

svchost.exe (WXP), 

teslacrypt, wannacry.exe, 

WinRAR.EXE. 

Windows XP,  

Windows 7 

62.989 

Final family, proc_pid, 

file, urls, type, name, 

ext_urls, path, program, 

info, families, 

description, sign_name, 

sign_stacktrace, 

arguments, api, category, 

imported_dll_count, dll, 

pe_res_name, filetype, 

7Zip, Task Manager 

(taskmgr), API WINDOWS 

SECURITY 

CRYPTOGRAPHY (cipher), 

API WINDOWS SYSTEM 

INFORMATION REGISTRY 

(regedit), API WINDOWS 

VOLUME MANAGEMENT 

(diskpart), Bitlocker, 

Windows XP_SP3  

Windows 

7_Ultimate 

Windows 

7_Professional 

Windows 

10_Enterprise 

Windows 

10_Professional 

1.424.344 
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Phase Selected features Artifacts Platforms Number of 

registers of 

the CSV 

dataset file  

pe_sec_name, entropy, 

hosts, requests, mitm, 

domains, dns_servers, 

tcp, udp, dead_hosts, 

proc, beh_command_line, 

process_path, children, 

tree_command_line, 

tree_process_name, 

command_line, 

regkey_read, wmi_query, 

directory_enumerated, 

regkey_opened, log, 

file_created, action, 

dll_loaded, file_read, 

regkey_written, 

apistats, errors 

BitPaymer, Cerber, cmd, 

Cryptolocker, Cryptowall,  

Crysis, dllhost, Eris, Windows 

Remote Desk, GandCrab, 

gpg, IPScan, Locky, Maze, 

Microsoft SQL Server 

Compact, Nmap, Petrwrap, 

Petya, Phobos, Radamant, 

RansomX, Ryuk, Satana, 

services, Sodinokibi, STOP, 

svchost, Team Viewer, 

Teslacrypt, VNC, WannaCry, 

WhatsAppWeb, Winrar, 

Wireshark. 

 family, proc_pid, 

file, urls, type, name, 

ext_urls, path, program, 

info, families, 

description, sign_name, 

sign_stacktrace, 

arguments, api, category, 

imported_dll_count, dll, 

pe_res_name, filetype, 

pe_sec_name, entropy, 

hosts, requests, mitm, 

domains, dns_servers, 

tcp, udp, dead_hosts, 

proc, beh_command_line, 

process_path, children, 

tree_command_line, 

tree_process_name, 

command_line, 

regkey_read, wmi_query, 

directory_enumerated, 

regkey_opened, log, 

file_created, action, 

dll_loaded, file_read, 

regkey_written, 

apistats, errors 

7Zip, Task Manager 

(taskmgr), API WINDOWS 

SECURITY 

CRYPTOGRAPHY (cipher), 

API WINDOWS SYSTEM 

INFORMATION REGISTRY 

(regedit), API WINDOWS 

VOLUME MANAGEMENT 

(diskpart), Bitlocker, 

BitPaymer, Cerber, cmd, 

Cryptolocker, Cryptowall,  

Crysis, dllhost, Eris, Windows 

Remote Desk, GandCrab, 

gpg, IPScan, Locky, Maze, 

Microsoft SQL Server 

Compact, Nmap, Petrwrap, 

Petya, Phobos, Radamant, 

RansomX, Ryuk, Satana, 

services, Sodinokibi, STOP, 

svchost, Team Viewer, 

Teslacrypt, VNC, WannaCry, 

WhatsAppWeb, Winrar,  

Wireshark. 

Windows XP_SP3  

Windows 

7_Ultimate 

Windows 

7_Professional 

Windows 

10_Enterprise 

Windows 

10_Professional 

2.000 
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Experiments in Phases Initial and Analysis 

This section will explain the processes in phases initial and analysis to obtain different 

combinations of features to feed the machine learning algorithms to evaluate their 

performance to establish the best possible configuration for the ransomware dataset. We 

divided the dataset by a Split operator in 75% for training and 25% for testing.  

Combination of Features 

We applied feature engineering and produced different feature vectors as a combination of 

characteristics. With these inputs, we evaluated processing times and algorithms’ 

performances. The combination spreadsheets refer to the number of non-repeatable 

combinations made with the selected attributes to form the dataset and the number of 

models generated for each combination. Also, the investigation has measured the time 

necessary to get the models. This time is, on average, 4 hours. The number of combinations 

must be multiplied by this number to obtain the time in hours and then divided by 24 to get 

the time in days. 

In the phase initial, it was chosen a total of 7 characteristics to form the dataset. Table 15 

covers these considerations for the seven features. In the second phase, seven features 

were added to the dataset for a total of 14. Table 16 shows the corresponding calculations. 

The time that all models would finish with all the features is too high (24.574,5 days), so it 

was decided to choose certain more significant features in the analysis. From stage 1, the 

regkey_read feature was selected, which affects the application layer models’ prediction 

behavior. With a broader network knowledge criterion, the UDP feature and the file feature 

were also considered because they describe the action at the application layer level. With 

these three characteristics added in one, the research obtained five factors to analyze. 

Table 17 shows the necessary time for the calculations. 

Table 15. Processing times for a combination of 7 characteristics 

Combination # Combinations Without Repetition # Models 

7 7 1 9 

7 6 7 63 

7 5 21 189 

7 4 35 315 

7 3 35 315 
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Combination # Combinations Without Repetition # Models 

7 2 21 189 

7 1 7 63 

TOTAL 127 1143 

  Time by a combination (Hours) 4 

  TOTAL Time (Hours) 4572 

  TOTAL Time (Days) 190.50 

 

Table 16. Processing times for a combination of 14 characteristics 

Combination # Combinations Without Repetition # Models 

14 14 1 9 

14 13 14 126 

14 12 91 819 

14 11 364 3276 

14 10 1001 9009 

14 9 2002 18018 

14 8 3003 27027 

14 7 3432 30888 

14 6 3003 27027 

14 5 2002 18018 

14 4 1001 9009 

14 3 364 3276 

14 2 91 819 

14 1 14 126 

TOTAL 16383 147447 

             Time by a combination (Hours) 4 

             TOTAL Time (Hours) 589788 

             TOTAL Time (Days) 24574.50 

    

 

Table 17. Processing times for a combination of 5 characteristics 

Combination # Combinations Without Repetition # Models 

5 5 1 9 

5 4 5 45 

5 3 10 90 

5 2 10 90 

5 1 5 45 
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Combination # Combinations Without Repetition # Models 

TOTAL 31 279 

  Time by a combination (Hours) 4 

  TOTAL Time (Hours) 1116 

  TOTAL Time (Days) 46.50 

In these phases, 279 learning models were processed in 60 days to obtain algorithm 

analysis, results, and confusion matrices. The discussion includes comparative analysis.  

Table 18 represents the combinations of characteristics used to generate the models. We 

have marked these mixtures with an identifier to present the performance of the classifiers 

to which these input vectors are applied. The comparison of performances for training is 

shown in Table 19, which gives the accuracy percentages to predict the type of artifact 

taken during model training. 

Table 18. Nomenclature for the combination of characteristics 

ID FEATURES 

5F1 (regkey_read, udp, file_created), dll_loaded, comand_line, domain, tcp 

4F1 (regkey_read, udp, file_created), command_line, domain, tcp 

4F2 (regkey_read, udp, file_created), dll_loaded, command_line, domain 

4F3 (regkey_read, udp, file_created), dll_loaded, command_line, tcp 

4F4 (regkey_read, udp, file_created), dll_loaded, domain, tcp 

4F5 dll_loaded, comand_line, domain, tcp 

3F1 (regkey_read, udp, file_created), comand_line, domain 

3F2 (regkey_read, udp, file_created), comand_line, tcp 

3F3 (regkey_read, udp, file_created), dll_loaded, comand_line 

3F4 (regkey_read, udp, file_created), dll_loaded, domain 

3F5 (regkey_read, udp, file_created), dll_loaded, tcp 

3F6 (regkey_read, udp, file_created), domain, tcp 

3F7 comand_line, domain, tcp 

3F8 dll_loaded, comand_line, domain 

3F9 dll_loaded, comand_line, tcp 

3F10 dll_loaded, domain, tcp 

2F1 (regkey_read, udp, file_created), comand_line 

2F2 (regkey_read, udp, file_created), dll_loaded 

2F3 (regkey_read, udp, file_created), domain 

2F4 (regkey_read, udp, file_created), tcp 

2F5 comand_line, domain 

2F6 comand_line, tcp 

2F7 dll_loaded, comand_line 
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ID FEATURES 

2F8 dll_loaded, domain 

2F9 dll_loaded, tcp 

2F10 domain, tcp 

1F1 (regkey_read, udp, file_created) 

1F2 comand_line 

1F3 dll_loaded 

1F4 domain 

1F5 tcp 

Table 19. Comparison of performances with different algorithms in the training dataset 

Figure 16 presents graphs with the comparison of the training dataset sheet. These graphs 

help establish which algorithm and features perform better by pinpointing a type of artifact. 

 
Author: Juan A. Herrera Silva 

Figure 16. Comparison of performance of the algorithms over the training dataset – Phase Analysis 

Model 5F1 4F1 4F2 4F3 4F4 4F5 3F1 3F2 3F3 3F4 3F5 

Naive Bayes 83,29% 83,23% 83,28% 82,77% 83,25% 60,01% 83,22% 82,71% 82,77% 83,22% 82,71% 

Generalized Linear 

Model 69,40% 69,87% 69,27% 68,89% 69,50% 59,75% 69,70% 69,14% 68,84% 69,18% 68,92% 

Logistic Regression 69,34% 69,77% 69,00% 68,62% 69,28% 59,74% 69,60% 68,92% 68,60% 68,93% 68,63% 

Fast Large Margin 75,87% 75,85% 75,76% 74,96% 75,85% 59,60% 75,71% 74,91% 74,98% 75,65% 74,85% 

Neural Networks 98,26% 98,34% 98,31% 97,13% 98,36% 60,68% 98,31% 97,11% 97,01% 98,24% 97,05% 

Decision Tree 98,09% 98,09% 98,09% 98,09% 98,09% 61,50% 98,09% 98,09% 98,09% 98,09% 98,09% 

Random Forest 93,18% 94,46% 94,33% 94,17% 94,97% 61,51% 96,69% 98,16% 97,30% 96,33% 97,96% 

Gradient Boosted Trees 99,73% 99,72% 99,73% 98,48% 99,72% 61,49% 99,72% 98,48% 94,48% 99,74% 98,48% 

Support Vector Machine 63,18% 62,55% 64,49% 64,30% 66,58% 58,65% 61,12% 62,46% 65,07% 64,07% 64,00% 
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The comparison of testing datasets presents the accuracy percentages to predict the artifact 

during model testing. There is a relationship between the parameters chosen and the 

models used. Table 20 indicates the performance of the different algorithms over the testing 

dataset. 

Table 20. Comparison of performance of the algorithms over the testing dataset 

Comparison of testing results 

Figure 17 presents graphs associated with comparing the algorithms over the testing 

datasets. These graphs help establish which algorithm performs best in the generation of 

the models and with which features pinpoint the prediction of a type of artifact. 

Model 5F1 4F1 4F2 4F3 4F4 4F5 3F1 3F2 3F3 3F4 3F5 

Naive Bayes 83.39% 83.30% 83.39% 82.81% 83.32% 59.83% 83.31% 82.74% 82.85% 83.30% 82.76% 

Generalized 

Linear Model 69.09% 69.48% 68.93% 68.62% 69.14% 59.44% 69.39% 68.96% 68.62% 68.83% 68.65% 

Logistic 

Regression 52.29% 52.25% 52.27% 52.30% 52.29% 58.03% 52.25% 52.27% 52.27% 52.29% 52.29% 

Fast Large 

Margin 75.31% 75.23% 75.24% 74.56% 75.26% 59.36% 75.16% 74.47% 74.61% 75.07% 74.38% 

Neural 

Networks 98.06% 98.00% 98.18% 96.45% 98.07% 60.60% 98.26% 96.53% 96.85% 98.16% 96.18% 

Decision Tree 98.05% 98.05% 98.05% 98.05% 98.05% 61.27% 98.05% 98.05% 98.05% 98.05% 98.05% 

Random 

Forest 92.88% 93.06% 96.89% 92.90% 96.89% 61.30% 98.22% 98.06% 98.05% 98.22% 98.23% 

Gradient 

Boosted 

Trees 99.68% 99.68% 99.67% 98.38% 99.68% 61.27% 99.67% 98.38% 98.38% 99.68% 98.38% 

Support 

Vector 

Machine 65.39% 62.75% 59.72% 59.79% 62.24% 58.77% 66.71% 58.55% 68.99% 60.99% 64.96% 
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Author: Juan A. Herrera Silva 

Figure 17. Comparison of performance of the algorithms over the testing dataset – Phase Analysis 

 

Table 21. Performance of the classifiers using five features over the training dataset 

(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp) 

Model Accuracy Precision Recall 
Classification 

Error 

Naive Bayes 83.29% 69.96% 57.63% 16.71% 

Generalized Linear Model 69.40% 47.06% 44.86% 30.60% 

Logistic Regression 69.34% 46.93% 44.84% 30.66% 

Fast Large Margin 75.87% 59.99% 48.65% 24.13% 

Neural Networks 98.26% 98.76% 95.32% 1.74% 

Decision Tree 98.09% 97.86% 97.06% 1.91% 

Random Forest 93.18% 96.55% 65.40% 6.82% 

Gradient Boosted Trees 99.73% 99.83% 98.47% 0.27% 

Support Vector Machine 63.18% 53.49% 37.16% 36.82% 

 

Table 22. Performance of the classifiers using five features over the testing dataset 

(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp) 

Model Accuracy Precision Recall 
Classification 

Error 

Naive Bayes 83.39% 68.15% 57.86% 16.61% 
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(Features: regkey_read, udp, file_created), dll_loaded, command_line, domain, tcp) 

Generalized Linear 

Model 69.09% 46.99% 44.69% 30.91% 

Logistic Regression 52.29% 40.68% 38.79% 47.71% 

Fast Large Margin 75.31% 56.52% 48.31% 24.69% 

Neural Networks 98.06% 98.78% 94.71% 1.94% 

Decision Tree 98.05% 97.70% 96.86% 1.95% 

Random Forest 92.88% 96.39% 65.28% 7.12% 

Gradient Boosted 

Trees 99.68% 99.81% 98.11% 0.32% 

Support Vector 

Machine 65.39% 54.31% 39.34% 34.61% 

Our study considers the algorithms specified at the beginning of this section, as shown in 

Tables 21 and 22. Tables 23 through 26 present the performance of the classifiers using 

different combinations of features both in training and testing. The Gradient Boosted Trees 

algorithm has better accuracy during the training process with 99.73%, and the testing 

process has 99.68%. 

Table 23. Performance of the classifiers using a combination of four features in training and testing 

Characteristics 

Algorithm / 

Model 

Accuracy 

training 

Precision 

training 

Recall 

training 

Classification 

Error Training 

Accuracy 

testing 

Precision 

testing 

Recall 

testing 

Classification 

Error testing 

(regkey_read, 

udp, 

file_created), 

command_line, 

domain, tcp 

Gradient 

Boosted 

Trees 

99.72% 99.80% 98.48% 0.28% 99.68% 99.81% 98.11% 0.32% 

(regkey_read, 

udp, 

file_created), 

dll_loaded, 

command_line, 

domain 

Gradient 

Boosted 

Trees 

99.73% 99.82% 98.48% 0.27% 99.67% 99.81% 98.11% 0.33% 

(regkey_read, 

udp, 

file_created), 

dll_loaded, 

domain, tcp 

Gradient 

Boosted 

Trees 

99.72% 99.81% 98.48% 0.28% 99.68% 99.81% 98.11% 0.32% 

(regkey_read, 

udp, 

file_created), 

dll_loaded, 

command_line, 

tcp 

Gradient 

Boosted 

Trees 

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62% 

dll_loaded, 

comand_line, 

domain, tcp 

Random 

Forest 

61.51% 86.72% 36.71% 38.49% 61.30% 86.67% 36.86% 38.70% 
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Table 24. Performance of the classifiers using a combination of three features in training and testing 

Characteristics 

Algorithm / 

Model 

Accuracy 

 training 

Precision  

training 

Recall 

training 

Classification 

Error training 

Accuracy 

testing 

Precision 

testing 

Recall  

testing 

Classification 

Error testing 

(regkey_read, 

udp, 

file_created), 

comand_line, 

domain 

Gradient 

Boosted  

Trees 

 

99.72% 99.82% 98.48% 0.28% 99.67% 99.81% 98.11% 0.33% 

(regkey_read, 

udp, 

file_created), 

comand_line, 

tcp 

Gradient 

Boosted  

Trees 

98.48% 99.12% 97.37% 1.52% 98.38% 99.10% 96.94% 1.62% 

(regkey_read, 

udp, 

file_created), 

dll_loaded, 

comand_line 

Gradient 

Boosted  

Trees 

94.48% 99.12% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62% 

(regkey_read, 

udp, 

file_created), 

dll_loaded, 

domain 

Gradient 

Boosted  

Trees 

99.74% 99.82% 98.48% 0.27% 99.67% 99.81% 98.11% 0.33% 

(regkey_read, 

udp, 

file_created), 

dll_loaded, tcp 

Gradient 

Boosted  

Trees 

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62% 

(regkey_read, 

udp, 

file_created), 

domain, tcp 

Gradient 

Boosted  

Trees 

99.72% 99.80% 98.48% 0.28% 99.68% 99.81% 98.11% 0.32% 

comand_line, 

domain, tcp 

Random 

Forest 
61.35% 86.24% 36.54% 38.65% 61.14% 86.63% 36.72% 38.86% 

dll_loaded, 

comand_line, 

domain 

Random 

Forest 

61.39% 86.69% 36.23% 38.61% 61.17% 83.23% 36.39% 38.83% 

dll_loaded, 

comand_line, 

tcp 

Random 

Forest 

59.85% 86.10% 35.21% 40.15% 59.64% 86.42% 35.23% 40.36% 

dll_loaded, 

domain, tcp 

Random 

Forest 
61.52% 86.81% 36.73% 38.48% 61.30% 86.67% 36.86% 38.70% 

 

Table 25. Performance of the classifier using a combination of two features in training and testing 

Characteristics 

Algorithm / 

Model 

Accuracy 

training 

Precision 

training 

Recall 

training 

Classification 

Error training 

Accuracy 

testing 

Precision 

testing 

Recall 

testing 

Classification 

Error testing 

(regkey_read, 

udp, 

file_created), 

comand_line 

Gradient 

Boosted  

Trees 

98.47% 99.12% 97.37% 1.53% 98.38% 99.10% 96.94% 1.62% 
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Characteristics 

Algorithm / 

Model 

Accuracy 

training 

Precision 

training 

Recall 

training 

Classification 

Error training 

Accuracy 

testing 

Precision 

testing 

Recall 

testing 

Classification 

Error testing 

(regkey_read, 

udp, 

file_created), 

dll_loaded 

Gradient 

Boosted  

Trees 

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62% 

(regkey_read, 

udp, 

file_created), 

domain 

Gradient 

Boosted  

Trees 

99.72% 99.82% 98.48% 0.28% 99.67% 99.81% 98.11% 0.33% 

(regkey_read, 

udp, 

file_created), 

tcp 

Gradient 

Boosted  

Trees 

98.48% 99.13% 97.38% 1.52% 98.38% 99.10% 96.94% 1.62% 

comand_line, 

domain 

Random  

Forest 
61.09% 85.94% 35.95% 38.91% 60.84% 83.00% 36.09% 39.16% 

comand_line, 

tcp 

Random  

Forest 
59.69% 85.61% 35.07% 40.31% 92.88% 96.39% 65.28% 7.12% 

dll_loaded, 

comand_line 

Random  

Forest 
59.64% 85.68% 34.56% 40.36% 59.41% 81.38% 34.68% 40.59% 

dll_loaded, 

domain 

Random  

Forest 
61.39% 86.08% 36.23% 38.61% 61.16% 82.39% 36.38% 38.84% 

dll_loaded, tcp 

Random  

Forest 
59.85% 85.37% 35.24% 40.15% 59.65% 85.33% 35.33% 40.35% 

domain, tcp 

Gradient 

Boosted  

Trees 

61.36% 85.83% 36.54% 38.64% 61.13% 86.72% 36.57% 38.87% 

 

Table 26. Performance of the classifiers using one feature in training and testing 

Characteristics 

Algorithm / 

Model 

Accuracy 

training 

Precision 

training 

Recall 

training 

Classification 

Error training 

Accuracy 

testing 

Precision 

testing 

Recall 

testing 

Classification 

Error testing 

(regkey_read, 

udp, 

file_created) 

Gradient 

Boosted 

Trees 

98.47% 99.12% 97.37% 1.53% 98.38% 99.10% 96.94% 1.62% 

comand_line 

Random 

Forest 
59.26% 85.30% 34.14% 40.74% 59.02% 71.72% 34.10% 40.98% 

dll_loaded 

Random 

Forest 
59.63% 84.74% 34.52% 40.37% 59.42% 81.38% 34.68% 40.58% 

domain 

Gradient 

Boosted 

Trees 

60.97% 80.67% 35.51% 39.03% 60.71% 76.52% 35.58% 39.29% 

Tcp 

Random 

Forest 
59.69% 85.25% 35.07% 40.31% 59.47% 86.08% 35.03% 40.53% 

To achieve a contextual view of our experiments’ findings, we present the best results for 

accuracy, using selected features, for training and testing during Phase initial and analysis, 

from Table 27 through 30.  Tables 27 and 28 below show the best accuracy using different 
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algorithms and considering the features that improve the classifiers’ performance in Phase 

initial. 

 

Table 27. Best accuracy in training (Phase initial) 

Algorithm Best  

Accuracy   

training 

Number  

Of  

Features 

Features 

Naive Bayes 77,82% 8 Regkey_written, regkey_ 

opened, regkey_read, 

processes, files, URLs, 

hosts, requests 

Gradient Boosted Trees 91,10% 7 Regkey_written, processes, 

files, URLs, requests, 

regkey_opened, 

regkey_read 

Neural Networks 79,07% 6 Regkey_written,processes, 

file, URLs, hosts, 

regkey_opened 

Neural Networks 89,27% 5 Files, URLs, hosts, requests, 

regkey_read 

Gradient Boosted Trees 90,13% 4 Processes, files, URLs, 

regkey_read 

Gradient Boosted Trees 93,14% 3 Regkey_written, processes, 

regkey_read  

Neural Networks 91,42% 2 Processes, regkey_read  

Support Vector Machine 95,38% 1 Regkey_read 

 

Table 28. Best accuracy in testing (Phase initial) 

Algorithm Best  

Accuracy   

testing 

Number Of  

Features 

Features 

Naive Bayes 76,88% 8 Regkey_written, regkey_opened, 

regkey_read, processes,files, URLs, 

hosts, requests 

Neural Networks 88,82% 7 Regkey_written, processes, files, 

URLs, requests, regkey_opened, 

regkey read 

Fast Large Margin 73,56% 6 Regkey_written, processes, file, 

URLs, hosts, regkey_opened 

Support Vector Machine 86,98% 5 Files, URLs, hosts, requests, regkey 

read 

Gradient Boosted Trees 80,68% 4 Processes, files, URLs, regkey, read 
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Algorithm Best  

Accuracy   

testing 

Number Of  

Features 

Features 

Gradient Boosted Trees 93,14% 3 Regkey_written, processes, 

regkey_read  

Neural Networks 89,43% 2 Processes, regkey_read  

Random Forest 80,58% 1 Regkey_read 

 

Tables 28, 29 and 30 show the algorithm's performance that obtained the best accuracy 

using different combinations of features, including a grouping of various features. It can be 

observed that performance was improved with the use of new features in this phase. 

 

Table 29. Best accuracy in training (Phase analysis) 

Algorithm Best 

Accuracy 

Training  

Number Of 

Features 

Features 

Gradient Boosted 

Trees 

99,73% 5 (regkey_read, udp, 

file_created), dll_loaded, 

command_line, domain, tcp 

Gradient Boosted 

Trees 

99,73% 4 (regkey_read, udp, 

file_created), 

command_line, domain, tcp 

Gradient Boosted 

Trees 

99,73% 4 (regkey_read, udp, 

file_created), dll_loaded, 

command_line, domain 

Gradient Boosted 

Trees 

99,73% 4 (regkey_read, udp, 

file_created), dll_loaded, 

domain,tcp 

Gradient Boosted 

Trees 

99,74% 3 (regkey_read, udp, 

file_created), 

dll_loaded,domain 

Gradient Boosted 

Trees 

99.74% 2 (regkey_read, udp, 

file_created), domain 

Gradient Boosted 

Trees 

98,48% 1 (regkey_read, udp, 

file_created) 
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Table 30. Best accuracy in testing (Phase analysis) 

Algorithm Best 

Accuracy 

testing 

Number Of  

Features 

Features 

Gradient Boosted 

Trees 

99,68% 5 (regkey_read, udp, 

file_created), dll_loaded, 

command_line, domain, tcp 

Gradient Boosted 

Trees 

99,68% 4 (regkey_read, udp, 

file_created), 

command_line, domain, tcp 

Gradient Boosted 

Trees 

99,68% 4 (regkey_read, udp, 

file_created), dll_loaded, 

command_line, domain 

Gradient Boosted 

Trees 

99,68% 3 (regkey_read, udp, 

file_created), dll_loaded, 

domain 

Gradient Boosted 

Trees 

99,67% 2 (regkey_read, udp, 

file_created),domain 

Gradient Boosted 

Trees 

98,38% 1 (regkey_read, udp, 

file_created) 

Table 31 presents the classification reports for all the machine learning considered 

algorithms, i.e., the table shows data for True Positive Rate (TPR), False Positive Rate 

(FPR), Accuracy, Precision, recall, and Classification Error.  

Table 31. Training and testing classification reports 

Features: (regkey_read, udp, file_created), dll_loaded, domain 

Training dataset 

Model TPR 1  TPR 2  FPR 1  FPR 2  Accuracy Precision  Recall  

Classification 

Error  

Naive Bayes 0.9511 0.7296 0.8367 0.8282 83.22% 69.69% 57.50% 16.78% 

Generalized 

Linear Model 0.8965 0.4417 0.6814 0.7284 69.18% 47.00% 44.61% 30.82% 

Logistic 

Regression 0.8935 0.4395 0.68 0.7211 68.93% 46.71% 44.43% 31.07% 

Fast Large 

Margin 0.9964 0.4573 0.7088 0.9877 75.65% 56.55% 48.46% 24.35% 

Neural Networks 0.9946 0.9708 0.9783 0.8383 98.24% 98.55% 95.85% 1.76% 

Decision Tree 0.9997 0.9534 0.9712 0.9995 98.09% 97.86% 97.06% 1.91% 

Random Forest 1 0.9352 0.9415 0.9999 96.33% 98.09% 87.50% 3.67% 

Gradient Boosted 

Trees 0.9999 0.9975 0.9956 0.9997 99.74% 99.82% 98.48% 0.27% 
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Support Vector 

Machine 0.9925 0.15 0.6229 0.9269 64.07% 49.69% 38.08% 35.93% 

         

Testing dataset 

Model TPR 1  TPR 2  FPR 1  FPR 2  Accuracy Precision Recall  

Classification 

Error  

Naive Bayes 0.9518 0.7347 0.8362 0.8329 83.30% 68.53% 57.78% 16.70% 

Generalized 

Linear Model 0.8983 0.4343 0.6767 0.7297 68.83% 46.89% 44.42% 31.17% 

Logistic 

Regression 0.4308 0.7282 0.7167 0.4195 52.29% 39.39% 38.78% 47.71% 

Fast Large 

Margin 0.9967 0.4468 0.7029 0.9885 75.07% 56.39% 48.12% 24.93% 

Neural Networks 0.9929 0.9717 0.9791 0.9844 98.16% 98.62% 95.90% 1.84% 

Decision Tree 0.9998 0.953 0.9709 0.9993 98.05% 97.70% 96.86% 1.95% 

Random Forest 0.9999 0.9574 0.9707 0.9998 98.22% 99.02% 97.06% 1.78% 

Gradient Boosted 

Trees 0.9998 0.9977 0.9948 0.9995 99.68% 99.81% 98.11% 0.33% 

Support Vector 

Machine 1 0.615 0.6008 1 60.99% 53.36% 35.38% 39.01% 

Datasets for Phases Initial and Analysis are included in Annexes M and N, respectively. 

5.2. Final Datasets of Features of Ransomware corresponding to Phase Final 

For the construction of the final dataset, it is necessary to have a series of analyses of 

Ransomware and Goodware artifacts so that the information can be extracted from the 

information collected regarding the behavior of these artifacts. This analysis execution also 

takes much time since it is required to perform a dynamic analysis of several artifacts for as 

long as possible to collect all possible information about their behavior within different 

environments. Annex L shows the use of CPU and memory resources of different artifacts 

in the used platforms.  

The results compile two thousand dynamic analyses with the cuckoo sandbox tool, including 

twenty non-malicious artifacts or goodware and twenty ransomware-type malicious 

artifacts. We used the same number of ransomware and goodware artifacts to build a 

balanced dataset. For balance, it is necessary to have the same number of samples for 

each class. The dataset was split for cross-evaluation, i.e., ten folds with 10% of the dataset 
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for testing and 90% for training, a process repeated ten times to obtain performance scores 

that can be averaged. Table 11 lists the artifacts that were considered for that analysis.  The 

following platforms were considered (Figure 14):  

• Windows XP Service Pack 3  

• Windows 7 Ultimate  

• Windows 7 Professional  

• Windows 10 Enterprise  

• Windows 10 Professional  

Each artifact was analyzed ten times for each selected operating system to collect all 

possible information that can be recorded within different environments. This way, we have 

the results of fifty dynamic analyses (json files) for each artifact.  As a total of forty artifacts 

were listed, this results in a total of two thousand executed analyzes from which the json 

files with the information of each analysis will be taken to build the respective data set. 

Dataset Global from Phase Final 

The information of the dataset is taken from the json files generated in the sandbox. The 

extraction tool explained in 4.2 allows extracting any number of features from each json 

generated by an artifact. For instance, if we need to get information for one specific 

characteristic such as “udp” that corresponds to the connections established through UDP 

during dynamic analysis, this feature is contained within an object called “network”. It can 

be observed that this feature does not have one register but multiple rows of information. It 

is a list of objects.  

The extraction tool accedes to this list's content and saves each record in a row within the 

dataset, as shown in Figure 18. 
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Author: Juan A. Herrera Silva 

Figure 18. Dataset rows corresponding to an ‘UDP’ feature of an artifact. 

The same process is applied to extract the rest of the features from the artifact’s json file, 

which is saved in a CSV file.  This process is carried out in this stage for different 

combinations of characteristics. Each corresponding dataset is evaluated with machine 

learning algorithms to obtain the optimal number of combination of attributes to generate 

high-performance models. 

As described in detail in Annex C the main objects such as: info, procmemory, target, 

extracted, buffer, network, signatures, static, dropped, behavior, debug, and their respective 

characteristics, which are present in a .json file.  There are a total of 326 features, of which 

a sweep was made of all of them, reviewing their behavior, what they represented and their 

main occurrence in the JSON file.  Highlighted in yellow are the main features that were 

selected for their behavior as Ransomware in the pre-, initial and analysis phases. For the 

final phase, the features highlighted in light blue and purple were selected, giving a total of 

64 features selected with an engineering procedure.  Once the features have been 

extracted with the tool developed in this work, 64 dynamic features are selected. According 

to the analysis, these are the features related to ransomware. 

These characteristics extracted for the different artifacts form a matrix that is used to select 

the most relevant ones using the Mutual Information Matrix method that allows us to detect 

if a pair of attributes has a high correlation that would lead us to conclude that the 

information is redundant. In that case, we will choose only one of them. The threshold 

considered is a 75% pair-wise correlation between attributes. 

X and Y are a pair of features with a joint probability mass function p(x,y) and marginal 

probability mass function p(x) and p(y). The mutual information matrix M(X, Y) is the relative 
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entropy considering the joint distribution and the product of the marginal distribution as 

presented in the equation. [131]  

       MI(𝑋, 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋     (8) 

After which, an automatic feature selection method was used, which is the Mutual 

Information Matrix and it can be seen which features have a high correlation with each other 

and these features that are more correlated are the ones that can be removed for selection. 

So, using this criterion we removed 14 features and worked with the final 50 features for 

modeling, since they have to do with the behavior of ransomware and have relevance 

because they are not redundant, since they are not related to others.  After this process, 

the 50 features of the final dataset were obtained.  

This process is carried out in this stage for different combinations of characteristics. Each 

corresponding dataset is evaluated with machine learning algorithms to obtain the optimal 

number y combination of attributes to generate high-performance models.  

Modeling Results with the Dataset Global 

Annexes E and F present this process for several feature combinations and their 

corresponding algorithms’ performances for supervised and Neural Networks, including 

detection times (Runtimes).  With this data, the author selected 50 features that yield the 

best results because they are related to the typical behavior of the analyzed artifacts. We 

have 50 attributes, 40 artifacts, and ten experiments for each artifact in five victim’s device, 

giving a total of 2000 json files. Because each json file has several rows, this first dataset 

generated in Phase final has 1’424.344 registers after a cleaning procedure to eliminate 

redundant rows (Dataset Global).  

The previous phases established that the algorithms that produce the best performances 

are Random Forest and Gradient Boosted Regression Trees. Also, Gaussian Naive Bayes 

and Neural Networks were included in this experimentation, although the yields are lower 

with these algorithms. The modeling results for this dataset are presented in Table 31 and 

Annex G, including detection times (Runtimes), which contains the logs for the generation 

of the models for Phase final, Dataset Global using supervised algorithms.   

In Annex H are detailed the results for the different models obtained with Neural Networks, 

including detection times (Runtimes), several configurations of layers, and the number of 
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neurons in each layer. The best configuration results for 3 layers with 200 neurons, sigmoid 

activation, and softmax output functions are also shown in Table 32.  For Random Forest 

and Gradient Boosted Regression Trees, the best results, without overfitting, are obtained 

for 100 estimators, i.e., trees in the forest. G, E, and L mean Goodware, Encryptor, and 

Locker.  Gradient Boosted Regression Trees is the algorithm with the best performance, 

but its processing time is around four hours, which makes it challenging to deploy for the 

operation cycle. 

The metrics used to evaluate the performance of the machine learning algorithms are 

accuracy, precision, recall, and F1.  

Table 32. Performance results for Dataset Global from Phase Final 

Algorithm Average 

ten-fold 

cross-

validation 

Accuracy 

Precision (%) Recall (%) F1 (%) Processing 

time 

(segs.) 
G E L G E L G E L 

Random 

Forest 

99.0 87.40 99.40 96.98 91.11 99.28 93.43 89.25 99.34 85.15 5193.67 

Gradient 

Boosted 

Regression 

Trees  

98.00 83.00 98.85 98.98 85.19 99.07 90.37 84.08 98.96 94.48 14755.79 

Gaussian 

Naive 

Bayes 

89.00 46.08 92.98 16.47 40.38 96.16 07.19 43.04 94.54 1.00 76.50 

Neural 

Networks  

91.92 92.31  90.55  92.12 2804.61 
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Figure 19. Ten-fold cross-validation accuracy results obtained in Dataset Global from Phase Final. 

The Dataset Global generated in Phase final is included in Annex O. 

For choosing the best option, we generated datasets for 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

16, 17, and 50 features. The best results were obtained for 50 features, as shown in Annex 

K for supervised learning and Annex J for Neural Networks, both include detection times 

(Runtimes). Therefore, we choose 50 features for this final dataset.  

Dataset Extract from Phase final  

The results with the dataset shown in the previous section are satisfactory. However, the 

file size of this dataset produces longer processing times and is neither portable nor efficient 

to be implemented in the deployment stage. For this reason, the previous dataset was 

processed to obtain one row for each json file corresponding to an artifact.   

For constructing this new dataset used for the generation of machine learning models, we 

start from the extraction of the previously described JSON content. The following image 

shows an example the information extracted from a single artifact analyzed, as seen in 

Figure 20. 



 

94 

 

 
Author: Juan A. Herrera Silva 

Figure 20. Information for a single artifact 
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A matrix is created where the columns correspond to each of the characteristics extracted 

from the analyzed artifact. This way, all the information collected throughout the analysis is 

grouped. Once this is done, the number of records by columns is counted. A cell with the 

value “N/A” is not counted. If it has a value other than "N/A," it is calculated.  Taking the 

previous image as an example, the result of the accounting for the artifact in question 

produces a unique vector. The number of registers for each column in the considered 

categories is found in each cell.  

We proceed to do this with the two thousand experiments of which we have the reports, 

and we obtain a matrix where each row has information about an artifact, and each row cell 

corresponds to a feature of that artifact. This process produces a matrix of 2000 rows and 

50 columns. This dataset generates the models using machine learning algorithms and is 

included in Annex P.  

Modeling Results with the Dataset Extract 

For the machine learning algorithms, we used the parameters specified in section 4.6, which 

are the ones that produce the best performances. For Random Forest and Gradient 

Boosted Trees, it is shown the performances for 100 estimators or trees. For Neural 

Networks, all the models have high performances. We chose one similar to the parameters 

used for Neural Networks for Dataset Global of Phase final, i.e., with three layers, 100 

neurons in each.  See Table 33. 

 However, we selected SELU as an activation function in this case because it runs a little 

faster.  Annex J and K show the complete log with all the experiments for different numbers 

of attributes and several estimators' values for supervised and Neural Networks. 

Table 33. Performance of the classifiers using Dataset Extract for Phase Final 

Algorithm Average 

ten-fold 

cross-

validation 

Accuracy 

Precision (%) Recall (%) F1 (%) Processing 

time 

(segs.) 
G E L G E L G E L 

Random 

Forest 

100 99.86 100 100 100 99.831 100 99.93 99.91 100 3.9 

Gradient 

Boosted 

Regression 

Trees  

100 99.74 100 100 100 99.66 100 99.86 99.98 100 25.47 
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Algorithm Average 

ten-fold 

cross-

validation 

Accuracy 

Precision (%) Recall (%) F1 (%) Processing 

time 

(segs.) 
G E L G E L G E L 

Gaussian 

Naive 

Bayes 

74.00 71.11 88.86 52.43 93.62 58.03 38.29 80.83 70.21 4.26 0.15 

Neural 

Networks  

99.8 99.8 99.8 99.8 6.99 

 

Figure 21. Ten-fold cross-validation accuracy using the Dataset Extract from Phase Final. 

The best results are obtained with the second dataset, as seen in Figure 21. Also, 

processing times for the model obtaining are significantly lower than with the previous 

dataset. Again, the best performance algorithms are Random Forest and Gradient Boosted 

Regression Trees, and slightly lesser values were obtained using Neural Networks with 

three layers with 100 neurons each.  Bayes reduces performance values from 89 obtained 

in Dataset Global to 74 obtained with the Dataset Extract for 10-fold cross-validation 

accuracy. 

5.3. Deployment 

The prediction of new artifacts requires generating a csv file with the previously described 

tool. Once you have the corresponding csv file, we use the ml_predictor.py and 

dl_predictor.py programs to make predictions with any generated models, whether in the 
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repository or not. The content of these files is concise enough to change the directories of 

csv files and models to execute the deployment. 

Our architecture allows analyzing the behavior of an artifact since it is created in a file 

system. It considers the sandbox environment for the dynamic analysis of an artifact, the 

information extraction tool obtained from the analysis, and the machine learning models to 

be used to classify the analyzed artifact, as shown in Figure 22. 
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Figure 22. Deployment architecture 
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The process of analyzing an artifact by deploying the models is detailed below: 

1. A file is introduced into the computer, for example, through a network. 

2. Using a Powershell script, the introduction (creation) of the file to the file system of the 

operating system is detected. 

3. Using the Powershell script, the client opens a WebSocket-type connection with the 

server and proceeds to send the file in question. 

4. Once it has received the entire file, the server starts the dynamic analysis process using 

the cuckoo sandbox tool. 

5. After completing the dynamic analysis process, Cuckoo Sandbox collects all the 

information and saves it in a file in json format. 

6. Once the creation of this file is detected, a variation of the information extraction tool is 

used to extract the relevant information that will serve as input for the machine learning 

models. 

7. Once the information has been extracted, the feature vector is built and sent to one of 

the previously trained machine learning models to obtain the classification (prediction) of 

the analyzed file. 

8. The classification (prediction) provided by the model is sent through the WebSocket 

connection to the client to take actions depending on whether it is Ransomware or not. 

Repository Content 

Inside the repository, there are two folders: 

1. The filter folder contains the source code of the information extraction tool and the 

dataset generated under which the Machine Learning and Neural Networks models were 

developed. This folder has the following files: 

• filter.py: Source code of the program in charge of extracting the information from one 

or more json files obtained with cuckoo. 



 

100 

 

• gui.py: Source code of the graphical interface that invokes the methods of the file 

filter.py 

• simplified_dataset_shuffled.csv: The dataset was built from the extraction of 

information from the two thousand JSON files obtained in the initial 

experimentation  

2. Machine Learning directory that contains two folders for Machine Learning and Neural 

Networks Logs. 

Machine Learning - Logs: 

 Logs_ML.xslx: This file contains a table with information regarding the generated 

Machine Learning models and the results obtained. 

 my_dataset_ml.txt: This file contains more information about each of the generated 

models. 

 Models: This folder contains the generated machine learning models that can be 

used in conjunction with the files to predict new artifacts. 

 ml_predictor.py: Python script that can be used to classify new artifacts. 

Neural Networks - Logs: 

 Logs_DL_NewDataset.ods: This file contains a table with information regarding the 

generated Neural Networks models and the results obtained. 

 new_dataset_dl_logs.txt: This file contains more information about each generated 

model. 

 Models: This folder contains the generated Neural Networks models that can be 

used in conjunction with the files to predict new artifacts. 

 Predictions: Contains prediction results of new artifacts from some previously 

generated Neural Networks models. 

  dl_predictor.py: Python script that can be used to classify new artifacts. 
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6. DISCUSSION 

6.1. Contributions of This Work 

From Tables 4 and 13, comparing the characteristics of other research with the present 

work, it can be inferred that our experiment has several advantages: 

 Unlike all the other studies analyzed in the Related Work section, which only use around 

three types of features, our research uses the full range of related attributes to study 

artifacts. This full use of different characteristics allows for the recognition of behavior 

patterns common to ransomware. Therefore, even new variants not initially present in 

the training set can be detected. 

The attributes used by this research are: 

• PROCMEMORY: memory management information; 

• EXTRACTED: information on executed scripts; 

• NETWORK: network data; 

• SIGNATURES: predefined patterns that might represent malicious behavior; 

• STATIC: static analysis data, including entropy level obtained by the cuckoo 

sandbox software; 

• BEHAVIOR: libraries to which the artifact makes calls, suspicious processes, and 

affected registry keys; 

• DEBUG: actions, errors, and log information recorded during the dynamic analysis. 

 

 Table 4 shows that most researchers use only a fraction of all possible types of features 

available in dynamic analysis, for example, attributes related to the network or API calls 

that are part of the behavior parameters. For better classification results, it is necessary 

to use a more complete description of the ransomware activities delineated by the 

presence of all the related types of dynamic features. For this reason, we chose 50 

attributes related to the before-mentioned group of dynamic parameters related to 

ransomware effects. 

 

 The 10-fold cross-validation accuracy, precision, recall, and F1 values obtained with the 

final dataset, using random forest and gradient boosted regression trees, are practically 

perfect, ensuring the threat’s detection with a processing time in the range of seconds. 
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Other studies have detection results comparable to or lower than the ones obtained in 

our research. 

 

 The dataset that our study delivers are a feature dataset; that is, it is information that is 

already ready to be used as input to a machine learning classifier to obtain models that 

can be tested on new data to be categorized. Most studies only mention the ransomware 

sample sources, e.g., VirusTotal, and the number of ransomware and goodware used 

in their datasets; they do not deliver their samples dataset nor the features dataset 

generated with their work. Unlike other studies, we present in the paper the information 

we produced in a GitHub repository for community use (https://github.com/Juan-

Herrera-Silva/PaperSENSORS, accessed on 2 December 2022). 

 

 The fact that we apply machine learning gives flexibility to our research because this 

technique allows for the discovery of hidden patterns in the ransomware behavior. 

Because this study uses the full range of relevant dynamic features without redundant 

information (with low correlation pairwise), it generates models that recognize patterns 

corresponding to the locker and crypto-ransomware variants not present in the training 

set. 

 

 The time it takes for our classifiers to process the samples is in the order of seconds, 

making it possible to detect the threat and stop it before any damage is achieved. 

 

 The range of platforms used for our study is more complete than the ones used in other 

studies. The sandbox implementation is executed in Windows XP, Windows 7 Ultimate, 

Windows 7 Professional, Windows 10 Enterprise, and Windows 10 Professional. 
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7. CONCLUSIONS 

The fact that ransomware attacks continue to produce millions in losses worldwide shows 

that there is much room for improvement in ransomware detection. The present work 

contributes to some of the still open issues. One of these issues is the necessity of a dataset 

containing features corresponding to all the ransomware attack patterns that could be used 

to train supervised algorithms and neural network models. This feature dataset should 

include all the relevant attributes related to the threat’s behavior and should be open for the 

development of new machine learning ransomware detection solutions. Our work aims in 

that direction. 

In the present research, the authors have developed a dataset composed of the dynamic 

features of locker and encryptor ransomware and characteristics extracted from goodware. 

The features were selected with the criteria that they are related to the effects of 

ransomware. In the literature, it was found that a ransomware dataset with these 

characteristics was needed because the ones that are publicly accessible do not have 

dynamic features of the artifacts but only fixed signatures, or their results are challenging to 

replicate or use for lack of enough descriptive information. 

Dynamic analysis is essential for ransomware detection because the run-time attributes 

have enough information for machine learning early detection of these threats. In our study, 

since most of these features are shared by diverse ransomware samples, our dynamic 

analysis can be used even for detecting new variants. For dynamic analysis, the 

experimentation must be conducted in an isolated environment to protect the network from 

using a sandbox for artifact execution. For this purpose, cuckoo sandbox was used to create 

JSON files with nested information of the dynamic features. The features were selected 

using criteria related to the role of each attribute in the ransomware attacks and the results 

of experimentation with machine learning algorithms aiming to obtain the best 

performances. The JSON file’s total number of features was 326, and the chosen 

characteristics were 50. 

In Phase Previous, we extracted seven features and tested them on five ransomware 

artifacts over two platforms to obtain a dataset of 6783 rows. In Phase initial, we added 

more ransomware families and goodware artifacts for dataset balancing, with a total of 24 

families to get a 47959 register dataset.  
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In Phase Analysis, we started feature engineering testing combinations of features to obtain 

the performance of the machine learning algorithms with each one. We found that the best 

performance was consistently yielded using Random Forest, Gradient Boosted Trees, and 

Neural Networks algorithms. In this stage, using combinations of 14 features, we tested 24 

families of artifacts over the same two platforms and generated a 62989 record dataset.  

On the other hand, when other authors use dynamic features, they only use some attributes, 

for example, attributes related to the network, API and DLL calls, or file systems. For better 

classification results that even detect variants not included in the training set, it is necessary 

to use a more complete description of the ransomware activities delineated by the presence 

of all the relevant dynamic features. 

In Phase Final, we developed two features datasets, Dataset Global and Dataset Extract.  

This research has gone through two steps to categorize three classes: locker ransomware, 

encryptor ransomware, and goodware.  

The first step, using our dynamic feature extraction tool, the features were tested, and 50 

characteristics were selected because they comply with criteria related to ransomware 

attacks. They were also tested to have a low pairwise correlation to avoid redundant 

information. In the trials, the study found that high performances for the machine learning 

algorithms were obtained for these 50 characteristics and the machine learning algorithms 

mentioned in Section 5. The researchers used 20 ransomware artifacts and 20 goodware 

families tested with ten experiments, each over five platforms, to produce a dataset named 

Dataset Global with 1’424.344 rows. For this dataset, there were several rows 

corresponding to one JSON. The best performance results were obtained with gradient 

boosted regression trees with values of 0.98 for 10-fold cross-evaluation accuracy. 

However, processing times for machine learning model generation were high because it 

took in the range of 4 h to obtain the models. 

The second step, to generate a more portable, efficient, and concise dataset without losing 

relevant information, the research developed a process for synthesizing all the rows 

corresponding to one JSON into one row. This way, using the information provided for the 

previous repository, the study obtained a second dataset named Dataset Extract with 2000 

records, corresponding to forty families and ten experiments for each artifact over five 

platforms. Using this dataset, performance results for our models improved even more for 

gradient boosted regression trees, random forest, and neural networks because they 
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reached values close to perfect detection for ransomware. The reported accuracy presented 

in the literature for ransomware detection gives 0.997 as a maximum value; thus, our 

models have comparable or better performance. Additionally, processing times were 

reduced from hours (using the Dataset Global) to seconds using the summary dataset 

(Dataset Extract). 

In the deployment, predicting new artifacts requires applying the generated models, whether 

in the repository or not. The programs allow changing the directories of csv json files and 

models to execute them in the production stage. 

This dataset is available for public access along with the present article and in the GitHub 

repository16. The dataset we deliver will allow the researchers to summarize which malware 

parameters affect a system more. Therefore, this information can be used as a starting point 

for generating new methods of detecting ransomware. As the dataset will be of public 

access, the scientific community can improve, modify, and share this knowledge. 

The present research’s objectives and hypothesis were achieved and confirmed.  

 

  

                                                

16 https://github.com/Juan-Herrera-Silva/Paper-SENSORS 
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8. FUTURE WORK 

Ransomware detection will remain one of the highest priority challenges for individuals and 

organizations for the years to come. Therefore, it is still necessary to find solutions that are 

really effective and can stop these attacks that are constantly evolving with new variants. 

Our approach using machine-learning models and ransomware feature datasets allows this 

detection to occur. However, it still requires work for general application outside the lab. As 

future work, we consider it is necessary to develop an application that can be executed in 

real-time to generate a program that obtains the JSON files using the cuckoo structure of 

new samples to form a feature vector. These feature vectors would be entered into the 

machine learning models to quickly detect the virus before it starts to encrypt the files. This 

requires a response time of fewer than 45 minutes because, according to Microsoft17, close 

to 97% of all ransomware infections take less than 4 hours to successfully infiltrate their 

target. The fastest can take over systems in less than 45 minutes.  

Additionally, the feature dataset should be constantly updated with new ransomware 

available data to produce machine-learning models capable of responding effectively to this 

threat. As the final feature dataset is public access, the author hopes the scientific 

community can use, improve, modify, and share this knowledge. 

  

                                                

17 https://blogs.microsoft.com/on-the-issues/2020/09/29/m icrosoft-digital-defense-report-cyber-threats/ 
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ANNEXES 

ANNEX A: Tool for feature extraction 

ANNEX B: Examples of the use of feature extraction tool 

ANNEX C: Objects and features in json files 

ANNEX D: Average occurrences of features for ransomware 

ANNEX E: Model performances for Neural Networks models for 12 Datasets in Phase Final 

ANNEX F: Model performances for Supervised Learning for 12 Datasets in Phase Final 

ANNEX G: Model performances for Supervised Learning for Dataset Global in Phase Final 

ANNEX H: Model performances for Neural Networks for Dataset Global in Phase Final 

ANNEX I: Generation for Dataset Global in Phase Final 

ANNEX J: Model performances for Neural Networks for Dataset Extract in Phase Final 

ANNEX K: Model performances for Supervised Learning for Dataset Extract in Phase Final 

ANNEX L: Artifacts’ use of CPU and memory 

ANNEX M: Dataset Phase Initial 

ANNEX N: Dataset Phase Analysis 

ANNEX O: Dataset Global Phase Final 

ANNEX P: Dataset Extract Phase Final 

 

Note: Annexes at: 

https://drive.google.com/drive/folders/1dLrRr4U8J3gFPkP5u0Is7QmgjgAuaD-X 

The Dataset Extract Phase Final is available for public access along with the present article 

and in the GitHub repository: https://github.com/Juan-Herrera-Silva/Paper-SENSORS 

https://drive.google.com/drive/folders/1dLrRr4U8J3gFPkP5u0Is7QmgjgAuaD-X

